OPaC: A Portable Graphical User
Interface

Portability Guide
and
Semester Project Report on Port to Unix/X11

Laurent Bovet

February 9, 1998

Contents

1 Introduction 2
1.1 Audience e 2
1.2 About this document 2
1.3 OPaCinaword 2

2 Portability Guide 4
2.1 Imterface 4
2.2 Graphic Interface Layer L. 5

221 Drawingo 5
222 Pixmap e e e 11
223 Window oL 12
224 Font 17
225 Mouse Cursoro 19
23 Event Handling L 20
231 Mouse 21
2.3.2 Keyboard 22
2.3.3 Otherevents 23
234 Methods 24
24 Color Manager e 25
25 Font Manager 26
2.6 Memory 26
2.7 File Input/Output 27
2.8 Startup 29

3 Report on Port of OPaC to Unix/X11 30
3.1 Imterface o 30
3.2 Graphic Interface Layer L. 30

321 Drawingo 30
322 Pixmap 36
323 Window 38
324 Font 42
3.25 Mouse Cursor 44
3.3 Event Handling 45
3.3.1 Global functions oL 45
332 Methods L 46
34 Color Manager i 48
3.5 Font Manager o 48
3.6 Memory 49
3.7 File Input/Output 49
3.8 Startup 51
4 Concluding with limitations 52

Chapter 1

Introduction

1.1 Audience

This document is intended to readers who want to know how to port the OPaC
Class Library to a new platform.

The reader should know the oriented object programming concepts and have
some basics of graphical user interface programming and X window.

It also describes the way it was done for Unix/X11 as a semester project at the
Laboratoire de Microinformatique of the Ecole Polytechnique Fédérale de Lausanne,
Switzerland.

This document is not a reference, nor a guide for development with OPaC. The
reader shall refer to the source code for information about the architecture of OPaC.

1.2 About this document

This document is divided into two chapters that have the same structure. The first
chapter is the portability guide. It describes the way to implement each feature of
the system dependent part of OPaC. The second chapter explains how each feature
of the system dependent part has been implemented for the port to Unix/X11, as
far it is not trivial.

1.3 OPaC in a word

The OPaC Class Library has been written in C++. It enables programmers to
dynamically edit their applications’ user interfaces at run time, modifying their
look and behaviour in a few mouse clicks. This has been achieved thanks to dy-
namic object allocation and dynamic message passing, thus suppressing the need
for scripting.

The OPaC class library has been under development since 1990. OPaC started
as a wrapper library aimed at writing highly portable code by abstracting the
system’s API into classes.

OPaC expanded to totally encompass the graphical user interface (GUI) : a
collection of widgets was implemented based only on low level graphic operations
and event handling was abstracted by defining a set of generic user events. In order
to reduce development time, a dynamic user interface editor was embedded into
OPaC, which allows the programmer and the end user to modify the interface even
while the application is running, changing not only its look but also its behaviour.

1. Introduction 1.3. OPaC in a word

The OPaC Library has been designed to be portable. The source code is split
into two categories: system dependent and system independent. This reduces port-

ing efforts.

A lot of interesting features such as automatic memory recycling, garbage col-
lection, smart references, dynamic method invocation, automatic class registration,
etc. have been added in the process.

Chapter 2

Portability Guide

To port OPaC, one must create adequate data structure and write methods that
access these structures. These structures are described in this chapter, highlighting
what information it should content. Each method is referenced and its behaviour
described.

The system dependent files are located in a sub-directory of sd/ named after
the specific system (e.g sd/linux). These files are:

sd_colman.cxx Color Manager

sd_event.cxx Event Handling
sd_file_io.cxx File Input/Output
sd_fontman.cxx Font Manager

sd_grail.cxx Graphical Interface Layer (Grail) Drawing Methods
sd_grailcur.cxx Grail Mouse Cursor
sd_grailfnt.cxx Grail Font

sd_grailpxm.cxx Grail Pixmap
sd_grailwdo.cxx Grail Window
sd_interface.h System dependent include file
sd_main.cxx Startup code

sd_memory . cxx Memory

2.1 Interface

sd_interface.h

This file should include all header files of the system API used by the system
dependent part. Put in this file all global definitions and declaration the implemen-
tation will use.

It also declares the following underlaying structures that are encapsulated in
system independent structures:

1. OPaC_GrPort
This contains all informations about a context. A context is a set of properties
for graphic outputs.

The fields should include:

e A reference to the graphic area receiving the output, i.e. a window or an
off-screen area

e Foreground drawing color

2. Portability Guide 2.2. Graphic Interface Layer

Background drawing color

Clipping region, i.e. a rectangular mask that constrains drawing inside
its bounds

Current brush properties

Current font properties

2. OPaC_GrPixmap
This contains a reference to a pixmap, i.e. an off-screen area where it is
possible to draw and store temporary pieces of graphics.

3. 0PaC_GrWindow
This contains a reference to a window. It also may contain information shared
by all the windows, such as a name used to identify which application a window
is from.

4. OPaC_ColorMan
This should contain a reference to a color map or a palette for old indexed
color systems.

5. 0PaC_GrCursor
This contains a reference to a mouse cursor structure.

6. OPaC_GrFont
This contains a reference to a font structure.

2.2 Graphic Interface Layer

OPaC uses double buffering for every output to the screen. Every drawing oper-
ation is performed on a pixmap having the same size than the actual window. The
pixmap is copied to the window each time it is needed; in case of new drawing and
if the window must be repaint.

So, the Grail must implement two kinds of “drawable” graphic area. One that
is off-screen and commonly called pixmap and the other that is the actual window
on the visible screen. This one is never given drawing operations directly.

The OPGrailWindow class inherits from OPGrailPixmap which inherits from
0PGrailPort which is somewhat abstract.

The drawing methods apply to 0PGrailPort objects. Because of double buffer-
ing, the window class is just a pixmap class that adds window specific methods.

The class definitions are in 0PaC/grail.h.

2.2.1 Drawing

sd_grail.cxx

Global functions

void

0PaC_GrailPort_Initialise (OPaC_GrPort*& info,
OPColorPixel f,
OPColorPixel b)

2. Portability Guide 2.2. Graphic Interface Layer

Initialise an empty Grail Port.

info is a reference to the Initialised graphic context. More generally, info is a
pointer to the encapsulated system dependent structure.

f is the foreground color

b is the background color

void
0PaC_GrailPort_Kill (OPaC_GrPort*& info)

Free resources allocated in 0PaC_GrailPort_Init

void

OPaC_GrailPort_BeginDraw (0PaC_GrPort#* info,
int x1, int yl1, int x2, int y2,
0PaC_ColorMan* cman)

Allocate resources and prepare the port for drawing output. This does not set
the clip mask or any attribute of the graphic context.

x1, y1, x2, y2 are coordinates of the rectangle where the drawing will take
place.

cman is a reference to the color manager used for this port and the following
drawing operations

void
0PaC_GrailPort_EndDraw (0PaC_GrPort* info)

Free resources allocated in 0PaC_GrailPort BeginDraw

void
0PaC_GrailPort_Flush (0PaC_GrPort* info)

Flush the graphical output. This forces the drawing operations to be executed
in case of queuing. This will not display the result on the screen, because of the
double buffering.

2. Portability Guide 2.2. Graphic Interface Layer

void
OPaC_GrailPort_SetClipRect (0OPaC_GrPort* info,
int x1, int y1, int x2, int y2)

Define a clipping rectangle. This will be called only between a 0PaC_GrailPort BeginDraw
and a OPaC_GrailPort EndDraw.

The clipping rectangle is a sub-area of the port that will accept a drawing op-
eration. Only the part of the drawing inside the clipping rectangle will be visible.

void

0PaC_GrailPort_SetForeColor (OPaC_GrPort* info,
0OPColorPixel pixel,
OPColorManIn cman)

Define the foreground color. This will be called only between a 0PaC_GrailPort BeginDraw
and a 0PaC_GrailPort EndDraw.

void

0PaC_GrailPort_SetBackColor (0OPaC_GrPort* info,
OPColorPixel pixel,
OPColorManIn cman)

Define the background color. This will be called only between a 0PaC_GrailPort BeginDraw
and a OPaC_GrailPort_EndDraw.

void

OPaC_GrailPort_SetLineStyle (0PaC_GrPort#* info,
OPColorPixel pixel,
OPLineStyle style,
OPColorManIn cman)

Define the line style. This will be called only between a 0PaC_GrailPort BeginDraw
and a OPaC_GrailPort_EndDraw.
style can have the following values:

OP_LINE_SOLID ________
OP_LINE_DOT
OP_LINE_DASH

2. Portability Guide 2.2. Graphic Interface Layer

void
0PaC_GrailPort_SetFont (0PaC_GrPort* info,
0PaC_GrFont* font_info)

Define the current font. This will be called only between a 0PaC_GrailPort BeginDraw
and a OPaC_GrailPort_EndDraw.

Target specific methods

void
OPGrailPort: :DrawDot (0PCoord x, OPCoord y)

void
OPGrailPort: :DrawDot (0PCoord x, OPCoord y, OPColorPixel color)

Draw a single pixel.

void
OPGrailPort: :DrawLineDX (0PCoord x, OPCoord y, 0OPCoord dx)

void
OPGrailPort: :DrawLineDY (0OPCoord x, OPCoord y, OPCoord dy)

Draw a line (segment), using one of the predefined dash styles. The segment is
always hair thin... The last dot will be drawn.
A line length of 0 won’t draw anything !

void
OPGrailPort: :DrawLineToX (OPCoord x1, OPCoord yl1l, 0PCoord x2)

void
OPGrailPort: :DrawLineToY (0OPCoord x1, OPCoord y1, OPCoord y2)

Draw a line (segment), using one of the predefined dash styles. The segment is
always hair thin... The last dot will be drawn.
A line with both extremities at the same location will draw just a single dot.

void
OPGrailPort: :DrawRect (OPRectIn box, OPRelCoord margin)

2. Portability Guide 2.2. Graphic Interface Layer

void
OPGrailPort: :DrawRect (0OPCoord x1, 0OPCoord yi1,
OPCoord x2, 0PCoord y2)

Draw rectangular box. The bottom left corner will be drawn at [x2;y2]. This
might not be the case on every system, so be careful to implent this the OPaC way.

void
OPGrailPort::FillRect (OPRectIn box, OPRelCoord margin)

void
OPGrailPort::FillRect (OPCoord x1, OPCoord y1,
O0PCoord x2, OPCoord y2)

Fill a rectangular box. The surface drawn is exactly the same as with DrawRect.
Beware, this is usually not the case on other systems !!!
Be careful to implement this method the right way.

void
OPGrailPort: :DrawHairLine (0PCoord x, 0PCoord y,
O0PCoord dx, OPCoord dy)

void
OPGrailPort: :DrawHairLineTo (OPCoord x1, OPCoord yi,
OPCoord x2, 0PCoord y2)

Draw a line segment. The segment is always hair thin and is not dashed... The
last dot will be drawn.

void
OPGrailPort: :DrawAALine (0OPCoord x, OPCoord y,
0OPCoord dx,0PCoord dy)

void
OPGrailPort: :DrawAALineTo (0PCoord x1, OPCoord yi,
0PCoord x2, 0PCoord y2)

Draw a line segment with anti-aliasing. The segment is always hair thin and is
not dashed... The last dot will be drawn.

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailPort: :ShowText (OPCoord x, OPCoord y, OPStringIn text,
Count start, Count length,
Card8 pos,
0PCoord dx)

void

OPGrailPort: :ShowText (OPRectIn box, OPStringIn text,
Count start, Count length,
Card8 pos, OPRelCoord margin)

void

OPGrailPort: :ShowText (0OPCoord x1, OPCoord yi1,
0PCoord x2, 0PCoord y2,
OPStringln text,
Count start, Count length,
Card8 pos)

Draw a piece of text, which will be extracted from a string starting at character
start and up to length characters. The way to position the text is specified by
pos and dx is used if aligned positioning has been requested.

pos is a bitwise-ored combination of the following values:

OP_TEXT_HPOS_LEFT >Hello <
OP_TEXT_HPOS_CENTER > Hello <
OP_TEXT_HPOS_RIGHT > Hello<
0P_TEXT_HPOS_ALIGN >He llo<
OP_TEXT_VPOS_BASE use baseline as vertical ref.
OP_TEXT_VPOS_TOP use top border as vertical ref.

OP_TEXT_VPOS_CENTER use text middle as vertical ref.
OP_TEXT_VPOS_BOTTOM use bottom border as vertical ref.

pos analysis can be done using the following masks:

0P_TEXT_HPOS_MASK
0P_TEXT_VPOS_MASK

void

OPGrailPort: :CopyRect (OPGrailPortIn source,
0PCoord source_x, 0OPCoord source_y,
0OPCoord dest_x1, OPCoord dest_yl,
OPCoord dest_x2, 0OPCoord dest_y2)

OPGrailPort: :CopyRect (OPGrailPortIn source,

0PCoord source_x, 0OPCoord source_y,
OPRectIn dest_box, OPRelCoord dest_margin)

Copy a rectangle from the source port to the current port, into the specified
box, from the source position given by its top/left corner.

10

2. Portability Guide 2.2. Graphic Interface Layer

This will copy the pixels, including the one of the bottom right corner. This is
still the same policy as with the rectangle.

If the attribute use_transparency of the port is set to TRUE, the color given by
the attribute transparent_color must be considered as transparent.

void
OPGrailPort: :SetColorPixels (0OPCoord x, OPCoord y, OPCoord dx,
const 0PColorPixel* pixels)

void
OPGrailPort: :SetGrayPixels (0OPCoord x, OPCoord y, 0PCoord dx,
const Card8* intensity)

void

OPGrailPort: :SetRGBPixels (0PCoord x, 0OPCoord y, OPCoord dx,
const Card8* red,
const Card8* green,
const Card8* blue)

SetColorPixels takes an array of dx or more pixels and draw them on a line
of the port beginning at x, y

SetGrayPixels takes an array of dx or more intensity values (0-255) draw them
on a line of the port beginning at x, y

SetRGBPixels takes three arrays of dx or more intensity values correponding to
red, green and blue components of a color, then draw them on a line of the port
beginning at x, y.

2.2.2 Pixmap
sd_grailpxm.cxx

OPGrailPixmap: :0PGrailPixmap ()

Initialise the Grail Pixmap instance. This won’t allocate any bitmap; do this
using OPGrailPixmap: :Initialise!

OPGrailPixmap: :~“0PGrailPixmap ()

Destroy cleanly a Pixmap : this will free an existing bitmap and associated data.

void
OPGrailPixmap: :BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailPixmap: :BeginDraw (OPCoord x1, OPCoord y1,
OPCoord x2, 0PCoord y2)

11

2. Portability Guide 2.2. Graphic Interface Layer

Start drawing into the pixel map. Put here all allocations or initializations
needed by this operation. One can draw within a rectangle given an inner margin
or in a rectangle given by its coordinates.

void
OPGrailPixmap: :EndDraw ()

End of drawing. Frees the resources allocated by BeginDraw.

void

OPGrailPixmap::Initialise (OPGrailPixmapIn window,
0PCoord dx,
OPCoord dy)

void
OPGrailPixmap::Initialise (Count depth, OPCoord dx, OPCoord dy)

Initialise a new pixel map. If one already existed, just delete it and start a
new. If window is not specified, the default screen will be used as model. window
is actually from type OPGrailWindow that is inherited from 0PGrailPixmap, hence
the type in the parameter list. The depth of the new pixmap must be set to the
depth of window or equal to depth in the second method.

Bool

OPGrailPixmap: :SystemGetRGBPixels (OPCoord x, OPCoord vy,
0PCoord dx,
Card8* r, Card8* g, Card8* b)

Reads dx pixels from a line of the pixmap beginning at x, y. The RGB values
of the pixels must be stored in the arrays r, g and b, respectively.

2.2.3 Window

sd_grailwdo.cxx
0PGrailWindow: : 0PGrailWindow ()
Construct a new window instance. Allocate memory for encapsulated system

dependent structure and set empty values to attributes.
Initialise name attributes.

12

2. Portability Guide 2.2. Graphic Interface Layer

OPGrailWindow: : “0PGrailWindow ()

Delete the window. Free any resourcees allocated by 0PGrailWindow.

void
OPGrailWindow::Initialise (OPWindowIn view,
OPWindowStyle style,
OPStringIn name,
OPRectIn box, OPRelCoord margin)

void

OPGrailWindow: :Initialise (OPWindowIn view,
OPWindowStyle style, 0OPStringlIn name,
0PCoord x1, 0PCoord yi,
0PCoord x2, 0PCoord y2)

Create the real window but do not open it. style is a bitwise-ored value of the
following items:

Modes:
OP_WIN_NAKED naked window (no frame)
OP_WIN_NORMAL normal window without title
OP_WIN_TITLE normal window with title
Attributes:
OP_WIN_MOVE_OK window may be moved
OP_WIN_SIZE_OK window may be sized
OP_WIN_REDUCE_OK window may be reduced (iconified)
OP_WIN_CLOSE_OK window may be closed

Extended attributes:

OP_WIN_TRANSPARENT window should be transparent
OP_WIN_FLOAT_TOOL window should be considered as a tool
OP_WIN_TOP_LEVEL window should be always on top

These flags can be selected through the following masks:

OP_WIN_MODE_MASK mask for mode
OP_WIN_ATTR_MASK mask for attributes
OP_WIN_EXTEND_MASK mask for extended attributes

The actual system window is likely to store a pointer or a handle to the as-
sociated 0PGrailWindow object. This can be done given that the system window
structure usually allows users to store associated data. This stored pointer will be
usefull to find the OPaC window structure given a system window.

13

2. Portability Guide 2.2. Graphic Interface Layer

void
OPGrailWindow: :ChangeName (0OPStringIn name)

Select another name for the current window. This is only possible if the window
has been defined with a title bar.

void
OPGrailWindow: :Open ()

Open an existing window on the screen. This is usually just a display command.
The following attributes must be set:

this->is_open = TRUE;
this->is_reduced = FALSE;

void
0PGrailWindow: :Reduce ()

Minimize the window, i.e. reduce it to an icon. The following attributes must
be set:

this->is_open = TRUE;
this->is_reduced = TRUE;

void
0PGrailWindow: :Close ()

Close the window. Do not destroy anything, just hide the window.
The following attributes must be set:

FALSE;
FALSE;

this->is_open
this->is_reduced

void
OPGrailWindow: :ActivateAsFrontWindow (Bool front)

Give the focus to the window.
front specifies if the window must be brought to the top.

14

2. Portability Guide 2.2. Graphic Interface Layer

void
OPGrailWindow: :SysChangedActive (Bool yes)

void
OPGrailWindow: : SysChangedOpen (Bool yes)

void
OPGrailWindow: :SysChangedVisible (Bool yes)

void

OPGrailWindow: : SysChangedReduced (Bool yes)

This routines must set the attributes is_active, is_open and is_reduced to
the right value. They also have to store information about the new state if needed.

Bool
OPGrailWindow: :IsActive () const

Just return the active attribute...

void
OPGrailWindow: :SetOrigin (OPCoord x, OPCoord y)

Set the window’s origin. This will be reflected immediately by the window man-
ager so that this can be used for dragging.

void
OPGrailWindow: :GetOrigin (OPCoordQOut x, OPCoordOut y) const

Return the origin of the window. Just use the bounding box attribute.

void
OPGrailWindow: :SetSize (0OPCoord dx, OPCoord dy)

Set the window size. The bounding box attribute must be updated according
to the new size.

15

2. Portability Guide 2.2. Graphic Interface Layer

void
OPGrailWindow: :GetSize (OPCoordOut dx, OPCoordQut dy) const

Return the window’s size. Use the bounding box attribute.

void
OPGrailWindow: :UserChangedGeometry ()

Get the new position and size of the window to fill in the bounding box at-
tribute and call the UserChangedGeometry method of the nested view if the box
has changed.

void
OPGrailWindow: : GetFrameSize (0OPCoordQut x1, 0PCoordQut yt,
OPCoordQut xr, 0PCoordOut yb)

void

OPGrailWindow: :GetFrameSize (0PWindowStyle style,
0PCoordQut x1, 0PCoordQOut yt,
OPCoordQut xr, 0PCoordOut yb)

Return the frame size, i.e. the thickness of the decoration around the window
content that is given by the window manager. The second method is static and
can’t currently be implemented on some systems. Some ports of OPaC don’t im-
plement these methods.

void
OPGrailWindow: :BeginDraw (OPRectIn box, OPRelCoord margin)

void
OPGrailWindow: :BeginDraw (OPCoord x1, OPCoord y1,
OPCoord x2, 0PCoord y2)

Start drawing into the window. This will first draw to the double buffering
pixmap. These methods have to call super: :BeginDraw in order to transmit the
message to the parent. Other information can be initialized by theses methods, as
the coordinates of the rectangle for further repainting.

16

2. Portability Guide 2.2. Graphic Interface Layer

void
0PGrailWindow: :EndDraw ()

Frees resources allocated in BeginDraw. It also has to call super: :EndDraw.

void
0PGrailWindow: :Flush ()

Send the graphic output to the screen. This should update the part of the screen
which has been changed between BeginDraw and EndDraw.

void
0PGrailWindow: :Redraw ()

Redraw the window, i.e. copy the double buffering pixmap to the window.

Bool

OPGrailWindow: :FindOwnWindow (0OPCoord x, 0PCoord vy,
0PGrailWindowQOut wdo,
Count index)

Find which window belonging to the application, if any, contains the speci-
fied coordinate. It looks for the nth window (0 is the topmost). Return FALSE if no
OPaC window is found or if an OPaC window is overlapped by a non-OPaC window.

2.2.4 Font

sd_grailfnt.cxx

0PGrailFont: :0PGrailFont ()

Initialise the attributes to null values.

0OPGrailFont: :~0PGrailFont ()

Free resources allocated for the font.

17

2. Portability Guide 2.2. Graphic Interface Layer

void
OPGrailFont: :Storelnstance (0PStorageln storage)

Archive the properties of the font. This should save the name, style and size
attributes.

void
OPGrailFont: :RestoreInstance (0OPStorageln storage)

Restore the attributes saved by StoreInstance.

Bool
OPGrailFont::Initialise (OPStringIn name,
OPStringIn style, OPCoord size)

Set the name, style and size attributes. Return the result of a call to RealizeFont
(see below).

Bool
0PGrailFont: :RealizeFont ()

Allocate resources for the font. Load or choose the system font according to
the attributes set by Initialise. Return TRUE if the font has been realized, FALSE
otherwise.

void
OPGrailFont: :GetFontName (OPStringOut name) const

void
OPGrailFont::GetFontStyle (0PStringQut name) const

0PCoord
0PGrailFont: :ReturnFontSize () const

Just returns the attributes of the font.

18

2. Portability Guide 2.2. Graphic Interface Layer

0PRelCoord
0OPGrailFont: :ReturnAscender () const

0PRelCoord
0PGrailFont: :ReturnDescender () const

Returns the size properties of the font. The ascender is the maximum distance
between the base line and the top of a character.

The descender is the maximum distance between the base line and the bottom
of a character. It is a negative value.

These are constants value for a given font.

0PCoord
OPGrailFont: :ReturnWidth (const LatinChar* text) const

0PCoord
OPGrailFont: :ReturnWidth (OPStringIn text) const

0PCoord

OPGrailFont: :ReturnWidth (OPStringIn text,
Count start, Count length) comnst

Return the width of the given string written in the current font.

2.2.5 Mouse Cursor
sd_grailcur.cxx

0PGrailCursor: :0PGrailCursor ()

Set the attributes to null values.

0PGrailCursor: :“0PGrailCursor ()

Free the resources allocated for the cursor.

void

OPGrailCursor::Initialise (OPCoord hotx, OPCoord hoty,
0PCoord dx, 0PCoord dy,
OPGrailPixmaplIn fg,
0PCoord xf, 0PCoord yf,
0OPGrailPixmapln bg,
0PCoord xb, 0PCoord yb)

19

2. Portability Guide 2.3. Event Handling

Initialise a cursor from the specified pixmaps. The background will be opaque
wherever it is set to black. The foreground will be painted wherever a black back-
ground has been drawn.

The foreground and background pixmaps are extracted respectively from the
given pixmaps fg and bg. They both are dx by dy sized and are fetched at (xf, yf)
for the foreground and at (xb, yb) for the background.

(hotx, hoty) is the hotspot of the cursor.

void
0PGrailCursor: :Activate () const

Make the cursor visible on the screen. This is not window dependent; the cursor
shape is changed for all windows.

void
0PGrailCursor: :ResetToNormal () const

Switch back to default cursor.

void
0PGrailCursor: :Hide () const

Remove any cursor from the screen.

2.3 Event Handling

sd_event.cxx

The event handling is implemented through the WaitForEvent method of the
OPEvent class. This class is instanciated once only to create the current event
object. WaitForEvent fills in this object as soon as a system event occurs.

The attributes of the event to fill are:

Card32 type; // event type

Card32 id; // event unique ID

OPWindowRef window; // window in which event occurred

OPRelCoord X; // pointer: horizontal position (wdo relative)
OPRelCoord Vs // pointer: vertical position (wdo relative)
Card32 buttons; // pointer: set of current buttons

20

2. Portability Guide

2.3. Event Handling

Card32 change;
OPObjectRef data;
OPAtomRef name;
Card32 code;
OPKey key;

//
//
//
//

specific: change (button, key, etc)
specific: data (user data, etc)
specific: name (key name, etc)
specific: code (OEM code, etc)

keyboard: shift, control & meta keys

The following paragraphs describe how to fill the event structure for each type

of event listed below:

OP_EVENT_NONE no event - used internally
OP_EVENT_PRESS pointing device: button pressed
OP_EVENT_RELEASE pointing device: button released
OP_EVENT_MOTION pointing device: moved
OP_EVENT_KEY_DOWN keyboard: key pressed
OP_EVENT_KEY_REP keyboard: automatic key repetition
OP_EVENT_KEY_UP keyboard: key released

OP_EVENT_KEY_CHANGE keyboard: one shift/modifier changed

The key attribute is a structure composed by the following attributes:

Card8 type; //
Card8 code; //
Card16 value; //
Card32 modifiers; //

key type (either alphanumeric or special)
special key code (ASCII upper case)
Unicode key value or other special value
associated extra modifiers

The key.modifiers attribute is a bitwise-ored combination of the following

values:

OP_EV_SHIFT
0P_EV_CONTROL
0P_EV_CAPS_LOCK
OP_EV_META_1
OP_EV_META_2
OP_EV_META_3
OP_EV_META_4
OP_EV_META_5

The class and constants definitions are in 0PaC/event.h and 0PaC/key.h

2.3.1 Mouse

Each mouse action is reported by an event.

OP_EVENT PRESS A mouse button is pressed. The following attributes must be set:

window, X, y, buttons, change, key

buttons is the state of the mouse buttons represented by a bitwise-ored combi-

nation of the following values:

21

2. Portability Guide 2.3. Event Handling

OP_EV_BUTTON_LEFT
OP_EV_BUTTON_MIDDLE
OP_EV_BUTTON_RIGHT

change is a bit field showing which button has been changed. It is one of the
above values.

key must be updated. Only the modifiers attribute has to be set. The others
have no sense for a mouse event.

OP_EVENT_RELEASE A mouse button is released.
The attributes to set are the same as for 0P_EVENT_PRESS.

OP_EVENT_MOTION The mouse is moved.
The following attributes must be set: window, x, y, buttons, key. They all have
the same meaning as for the other mouse events.

2.3.2 Keyboard

OP_EVENT KEY DOWN A key is pressed. The following attributes must be set: window,
X, y, buttons, change, key.

change is a bit field showing which modifiers have been changed since last event.
This is a bitwise-ored combination of the following values:

OP_EV_SHIFT
0P_EV_CONTROL
0P_EV_CAPS_LOCK
OP_EV_META_1
OP_EV_META_2
OP_EV_META_3
OP_EV_META_4
OP_EV_META_b5

key.modifiers is the current modifiers state.
key.type is one of the following values, according to the kind of key pressed:

OP_KEY_NONE no key :-)

0OP_KEY_SPECIAL special key (PRINT SCRN, MACRO, UNDO...)
0OP_KEY_ALPHANUM any character

OP_KEY_FUNCTION function keys FO..Fn

OP_KEY_RETURN return key (that’s the "<-+" key")
OP_KEY_ENTER extended enter key (numeric key pad)
OP_KEY_TAB tabulation key

OP_KEY_BACKSPACE backspace (that’s the "<--" key)
OP_KEY_DELETE delete forward character

OP_KEY_CURSOR cursor (up/down/left/right/page/home. ..

For any key to which corresponds a Latin-1 character, use the 0P_KEY_ALPHANUM
type. key.value must be set to this character. key.code must be set to the upper-
case version of this character, if any. key.name is left empty.

22

2. Portability Guide 2.3. Event Handling

For the common keys, i.e. return, enter, tab, backspace and delete, use the cor-
responding type and set the key.name attribute to the type string without 0P_KEY_
before. key.code and key.value are left empty.

For the cursor keys, use the OP_KEY_CURSOR type. Fill in the key. code attribute
with the corresponding value listed below:

0P_CURSOR_SPECIAL machine specific cursor key
0P_CURSOR_UP move one line up
0P_CURSOR_DOWN move one line down
OP_CURSOR_LEFT move one character left
0P_CURSOR_RIGHT move one character right
0P_CURSOR_PAGE_UP move one page up
OP_CURSOR_PAGE_DOWN move one page down
0P_CURSOR_HOME move to line beginning
0P_CURSOR_END move to line end
0P_CURSOR_TOP move to document top
0P_CURSOR_BOTTOM move to document bottom

key.name must be set to the type string without 0P_CURSOR.- before and replace
underscore characters by spaces. key.value is left empty.

Treat the numeric keypad like the other character keys. OPaC need not to see
the difference.

For the function keys, use the OP_KEY FUNCTION type. Set the key.name at-
tribute to "Fxx" where xx is the value written on the function key. The key.code
and key.value are left empty.

Any other key that should be handled is considered as a special key and has
OP_KEY_SPECIAL type. Set the key.name attribute to the following values for the
usual keys:

"CLEAR"
"ESCAPE"
"EXECUTE"
"HELP"
"INSERT"
"NUM LOCK"
"PAUSE"
"PRINT"
"RETURN"
"SELECT"
"SEPARATOR"

The key.code and key.value are left empty.

2.3.3 Other events

Some other events have to be treated:

23

2. Portability Guide 2.3. Event Handling

Timer In order to provide some computing while waiting user events, a timer
event must be given periodically. Its type must be set to OP_TIMER_-TICK. The
period should be about 50 milliseconds. The other attributes remain empty.

Exposure Some systems give the responsability to the program to repaint the
window after being hidden by aother window. They usually provide an event to
notify that the window should be entirely or partially repainted.

No OPaC event exists to perform this operation. When an event like that is
received, the Redraw method of the window must be called.

Size and position When the user or the window manager changes the geometry
of the window, the event handler must call the UserChangedGeometry method of
the modified window. A window iconification has to be notified through a call to
its SysChangedReduced method.

Focus When a window gets or looses the focus, it should be notified through a
call to its SysChangedActive method.

Close When the user or the window manager tries to kill a window, the event
handler should call the PostQuitEvent method of the current event object. This
leads to the end of the application.

2.3.4 Methods

void
OPEvent: :HandOverToWindow (0PWindowIn window)

Hand the event capture from the current window to the specified one. This may
be useful if some dragging op creates a new window and needs to give it the focus.

OPEvent: :0PEvent ()

Initialise an event record. As only one OPEvent object exists, this method is
called once only.

OPEvent: : 0PEvent ()

Destroy the event. Free resources allocated in OPEvent: :Initialise.

Bool
OPEvent: :WaitForEvent ()

24

2. Portability Guide 2.4. Color Manager

This is the main method. It waits for system events and fills in the attributes
as described above. This is usually a big switch statement.

void
OPEvent: :DispatchEvent ()

Just call the system independent DispatchEvent method of the window con-
cerned by the event.

void
OPEvent: :PostQuitEvent ()

Indicate that the application has to quit. This has to lead to set the is_dead
attribute of the event object to TRUE.

void
OPEvent::Initialise ()

Allocate resource for the event object. As only one OPEvent object exists, this
method is called once only.

void
OPEvent::Kill ()

Clean up before exiting the application.

2.4 Color Manager

sd_colman.cxx

The color manager should detect the type of display to choose a color model and,
if needed, use a colormap. This system dependent part interfaces the OPaC color
manager to the underlaying color system of the specific platform.

The class definition is in 0PaC/grail.h

0OPColorMan: : 0PColorMan ()

25

2. Portability Guide 2.5. Font Manager

Initialise a color manager. Determine if it will have to use an indexed or a true
color model.

This method must call ComputeNearestColor to set up a table for gray levels.
ComputeNearestColor is a system independent method.

OPColorMan: : “0PColorMan ()

Clean up the color manager.

0OPColorPixel
OPColorMan: :MakeTrueColor (Card8 r, Card8 g, Card8 b) const

Return the pixel value for the RGB components. This will be used to get a true
color pixel representation.

Bool
OPColorMan: :FindColor (OPColorPixel p,
Card80ut r, Card80ut g, Card80ut b) const

Return the color components from a pixel value.

2.5 Font Manager

sd_fontman.cxx

The font manager registers the system fonts. A database is build by the con-
structor OPFontMan: : 0OPFontMan.

Since the properties and the name of fonts are system specific, this section is not
extensively documented. In the future, OPaC should provide or use an universal
font system, such as True Type or a custom system.

To port OPaC without implementing the font manager, leave sd_fontman.cxx
empty and implement OPGrailFont::RealizeFont (p. 18) to always realize the
default font.

2.6 Memory

sd_memory.cxx The memory manager allocates system memory. This is easily im-
plemented on systems that provide entire virtual space memory allocation. Some
systems need special handling for allocation, this special handling has to be treated
in this file.

26

2. Portability Guide 2.7. File Input/Output

Bool
SysMemOpenZone (const LatinChar* name,
Card320ut zone_id)

Create a system zone if the system uses allocation zones.

Bool
SysMemCloseZone (Card32In zone_id)

Close a memory zone.

Bool

SysMemAlloc (Card32In zone_id, Card32In size,
BytePtrOut ptr,
Card320ut allocated,
Card320ut mem_id)

Allocate memory in the specified zone.

Bool

SysMemFree (Card32In zone_id,
BytePtrIn ptr,
Card32In allocated,
Card32In mem_id)

The memory free function will have to free the memory which has been allocated
previously by SysMemAlloc.

2.7 File Input/Output

sd_file_io.cxx These file functions handle access to files. They should not be
difficult to implement on a common system, since sequential file access is popular.

OPaC_FileDesc
OPaC_OpenFileRead (OPStringIn name)

Open a file for reading in it.

27

2. Portability Guide 2.7. File Input/Output

OPaC_FileDesc
OPaC_OpenFileWrite (0PStringIn name)

Open a file for writing in it.

OPaC_FileDesc
OPaC_OpenFileAppend (0PStringIn name)

Open a file for appending data to it.

Size
OPaC_ReadFile (OPaC_FileDesc file, void* void_buffer, Size size)

Read a chunk of data from an open file.

Size
OPaC_WriteFile (0OPaC_FileDesc file,
const void* void_buffer, Size size)

Write a chunk of data to a file.

Bool
0PaC_SeekFileAbs (0OPaC_FileDesc file, Int32 offset)

Move the reading/writing head offset bytes from the beginning of the file.

Bool
OPaC_SeekFileRel (OPaC_FileDesc file, Int32 offset)

Move the reading/writing head offset bytes from the current position. offset
can be negative.

28

2. Portability Guide 2.8. Startup

Size
OPaC_TellFilePos (OPaC_FileDesc file)

Returns the position of the reading/writing head from the beginning of the file.

Size
OPaC_TellFileSize (OPaC_FileDesc file)

Returns the file size.

Bool
OPaC_FlushFile (0PaC_FileDesc file)

Synchronize the in-memory file and the stored version. Flush all read/write
buffers.

Bool
0PaC_TruncFile (0OPaC_FileDesc file)

Truncate the file at he current reading/writing head position.

Bool
OPaC_ResizeFile (OPaC_FileDesc file, Size size)

Truncate the file at most size bytes.

Bool
OPaC_CloseFile (OPaC_FileDesc file)

Close the open file.

2.8 Startup

sd_main.cxx
This file contains the main() function. This function should contain all the

initialisations that have to be made before all and which are system dependent.
OPaC MainInit must be called to create the application.

29

Chapter 3

Report on Port of OPaC to
Unix/X11

This chapter explains how the port was done to Unix/X11. The development has
been done under Linux with gcc. The Xlib programming has been realized with the
help of O’Reilly & Associates X window guides [1, 2].

A “gspiral” approach has been chosen, it means that the features have been
iteratively implemented through several passes. The goal of the first pass was to get
the Builder application (provided with OPaC Class Library) to work. The methods
have been implemented the simpliest way as possible. Each next pass improved the
quality of the implementation in matters of specification matching and performance
optimisation. The product, at the time this document has been written is valid for
a wide range of applications to run under Linux. Further development should be
done to get a full Unix portable version. See chapter 4 for the limitations and bugs
of the current version.

Each feature of the portability guide is described in this chapter explaining
which Xlib primitives has been used and, the way some tricky parts have been
implemented.

This should help the programmer who want to port OPaC to a new platform
and is a basis for further development on the port to Unix.

The reader shall refer to the source for implementation details.

3.1 Interface

sd_interface.h

Since OPaC design has been inspired by some X concepts, the structures of the
library and those of Xlib are quite similar.
Some #define symbols are common to OPaC and Xlib. They have been rede-
fined in the interface file.

3.2 Graphic Interface Layer

3.2.1 Drawing

sd_grail.cxx

30

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

Global functions

void

OPaC_GrailPort_Initialise (OPaC_GrPort*& info,
0OPColorPixel f£,
OPColorPixel b)

Xlib primitive used:

XCreateGC

void
0PaC_GrailPort_Kill (OPaC_GrPort*& info)

Xlib primitive used:

XFreeGC

void

OPaC_GrailPort_BeginDraw (0OPaC_GrPort* info,
int x1, int yl1, int x2, int y2,
0PaC_ColorMan* cman)

No special implementation.

void
0PaC_GrailPort_EndDraw (0PaC_GrPort* info)

No special implementation.

void
0PaC_GrailPort_Flush (0PaC_GrPort* info)

Xlib primitive used:

XFlush

void
OPaC_GrailPort_SetClipRect (0PaC_GrPort#* info,
int x1, int y1, int x2, int y2)

31

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

Xlib primitive used:

XSetClipRectangles

void

0PaC_GrailPort_SetForeColor (0OPaC_GrPort* info,
OPColorPixel pixel,
OPColorManIn cman)

Xlib primitive used:

XSetForeground

void

0PaC_GrailPort_SetBackColor (OPaC_GrPort* info,
OPColorPixel pixel,
OPColorManIn cman)

Xlib primitive used:

XSetBackground

void

OPaC_GrailPort_SetLineStyle (0PaC_GrPort#* info,
OPColorPixel pixel,
OPLineStyle style,
OPColorManIn cman)

Xlib primitives used:

XSetDashes
XSetForeground
XSetLineAttributes

void
0PaC_GrailPort_SetFont (0PaC_GrPort* info,
0PaC_GrFont* font_info)

Xlib primitive used:

XLoadFont
XSetFont

32

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

Target specific methods

void
OPGrailPort: :DrawDot (0PCoord x, OPCoord y)

void

OPGrailPort: :DrawDot (0PCoord x, OPCoord y, 0PColorPixel color)

Xlib primitive used:

XDrawPoint

void
OPGrailPort: :DrawLineDX (0PCoord x, OPCoord y, 0OPCoord dx)

void

OPGrailPort: :DrawLineDY (0OPCoord x, OPCoord y, OPCoord dy)

Xlib primitive used:

XDrawLine

void
OPGrailPort: :DrawLineToX (OPCoord x1, 0PCoord y1, 0PCoord x2)

void

OPGrailPort: :DrawLineToY (OPCoord x1, OPCoord yl1, 0PCoord y2)

Xlib primitive used:

XDrawLine

void
OPGrailPort: :DrawRect (OPRectIn box, OPRelCoord margin)

void
OPGrailPort: :DrawRect (OPCoord x1, 0OPCoord yi1,
OPCoord x2, 0PCoord y2)

Xlib primitive used:

XDrawRectangle

33

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void
OPGrailPort::FillRect (OPRectIn box, OPRelCoord margin)

void
OPGrailPort::FillRect (OPCoord x1, OPCoord y1,
OPCoord x2, OPCoord y2)

Xlib primitive used:

XFillRectangle

void
OPGrailPort: :DrawHairLine (OPCoord x, OPCoord y,
0PCoord dx, 0PCoord dy)

void
OPGrailPort: :DrawHairLineTo (0OPCoord x1, 0PCoord yi,
OPCoord x2, 0PCoord y2)

Xlib primitive used:

XDrawLine

void
OPGrailPort: :DrawAALine (0PCoord x, OPCoord y,
OPCoord dx,0PCoord dy)

void

OPGrailPort: :DrawAALineTo (OPCoord x1, OPCoord yi,
O0PCoord x2, 0OPCoord y2)

Not implemented. Use XDrawLine.

void

OPGrailPort: :ShowText (OPCoord x, OPCoord y, OPStringIn text,
Count start, Count length,
Card8 pos,
0PCoord dx)

void
OPGrailPort: :ShowText (OPRectIn box, OPStringIn text,

Count start, Count length,
Card8 pos, OPRelCoord margin)

void

34

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

OPGrailPort: :ShowText (0OPCoord x1, OPCoord yi1,
0PCoord x2, 0PCoord y2,
OPStringIn text,
Count start, Count length,
Card8 pos)

Xlib primitives used:

XQueryTextExtents
XDrawString

First queries the X server for the geometry of the string to display in the current
font to align it according to the style wanted.
The first method do the actual system calls, the others call the first.

void

OPGrailPort: :CopyRect (OPGrailPortIn source,
0PCoord source_x, 0OPCoord source_y,
0OPCoord dest_x1, OPCoord dest_yl,
OPCoord dest_x2, 0OPCoord dest_y2)

OPGrailPort: :CopyRect (OPGrailPortIn source,
0PCoord source_x, 0OPCoord source_y,
OPRectIn dest_box, OPRelCoord dest_margin)

Xlib primitives used:

XFillRectangle
XCopyArea
XCopyPlane
XCreateGC
XCreatePixmap
XFreeGC
XFreePixmap

XCopyArea performs a copy without transparency. For transparency support,
the following process has been used:

e Create a colormask pixmap that is initially filled with the transparent color

e Merge the source to the colormask in order to an image where transparent
pixels are white and others are not white

e Create a clipmask (pixmap of only one bitplane) from the colormask by merg-
ing the planes. The result is a bitmap with white pixels for the transparent
color and black for the others

e Invert the clipmask
e Initialize a temporary pixmap identical to the destination

e Copy the source to a temporary pixmap using the clipmask

35

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

e Eventually copy the temporary pixmap to the destination

The use of the temporary pixmap is needed to hold the clipmask of the destina-
tion to its original shape.

void
OPGrailPort: :SetColorPixels (0OPCoord x, 0PCoord y, OPCoord dx,
const 0PColorPixel* pixels)

void
OPGrailPort: :SetGrayPixels (0OPCoord x, OPCoord y, 0PCoord dx,
const Card8* intensity)

void

OPGrailPort: :SetRGBPixels (0PCoord x, 0OPCoord y, OPCoord dx,
const Card8* red,
const Card8* green,
const Card8* blue)

Xlib primitives used for SetColorPixels:

XSetForeground
XDrawPoint

Xlib primitives used for SetRGBPixels:

XAllocColor
XPutPixel
XPutImage
XDestroyImage

SetGrayPixels calls SetRGPPixels

SetRGBPixels writes into an XImage structure that is local to the client. It only
allocates colors once by storing them in an array. This is efficient for pixel lines
that use a few colors. When the image is drawn, it is sent in one request to the server.

3.2.2 Pixmap

sd_grailpxm.cxx

OPGrailPixmap: :0PGrailPixmap ()

No special implementation.

OPGrailPixmap: :~“0PGrailPixmap ()

Xlib primitive used:

36

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

XFreePixmap

void
OPGrailPixmap: :BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailPixmap: :BeginDraw (OPCoord x1, OPCoord yi,
OPCoord x2, 0OPCoord y2)

No special implementation.

void
OPGrailPixmap: :EndDraw ()

No special implementation.

void

OPGrailPixmap::Initialise (0PGrailPixmapIn window,
0PCoord dx,
OPCoord dy)

void

OPGrailPixmap::Initialise (Count depth, OPCoord dx, OPCoord dy)

Xlib primitives used:

XCopyGC
XCreatePixmap
XDefaultDepth

Bool

OPGrailPixmap: :SystemGetRGBPixels (OPCoord x, OPCoord vy,
0PCoord dx,
Card8* r, Card8* g, Card8+* b)

Xlib primitives used:

XGetImage
XDestroylImage
XQueryColors

Fetch the whole line in one request by using an XImage structure, get the color
values in one call, then traverse the color array to fill the given arrays.

37

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

3.2.3 Window

sd_grailwdo.cxx

0PGrailWindow: : 0PGrailWindow ()

0PGrailWindow: : "0PGrailWindow ()

Xlib primitives used:

XDestroyWindow
XWindowEvent

Destroy the window, then a loop wait for all the pending events associated with
the window up to the notification insuring that the window has been destroyed.
This work is done to avoid receiving events associated with the window after it was
destroyed.

void
OPGrailWindow: :Initialise (OPWindowIn view,
OPWindowStyle style,
OPStringIn name,
OPRectIn box, OPRelCoord margin)

void

OPGrailWindow: :Initialise (OPWindowIn view,
OPWindowStyle style, OPStringIn name,
0PCoord x1, 0PCoord yi,
0PCoord x2, 0PCoord y2)

Xlib primitives used:

XCreateSimpleWindow
XSetWMSizeHints
XSetWMProtocols
XChangeWindowAttributes
XStoreName
XChangeProperty
XSelectInput

The window is created and its size set according to the given window style.
The name is stored as well as the id and a numeric value that is the adress of the
OPGrailWindow structure. It is stored as a string to support architectures that have
different adress spaces. These informations are stored as window properties, in X
jargon. They are accessible via atoms. Later, the presence of the properties can be
checked to determine if a window is an OPaC window.

An event mask is set for the new window, it specifies what kind of events are
sent for this window.

38

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void
OPGrailWindow: :ChangeName (0OPStringIn name)

Xlib primitive used:

XStoreName

void
OPGrailWindow: :Open ()

Xlib primitive used:

XMapWindow

void
OPGrailWindow: :Reduce ()

Xlib primitive used:

IconifyWindow

void
0PGrailWindow: :Close ()

Xlib primitive used:

XUnmapWindow

void
OPGrailWindow: :ActivateAsFrontWindow (Bool front)

Xlib primitive used:

XSetInputFocus

39

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void
OPGrailWindow: :SysChangedActive (Bool yes)

void
OPGrailWindow: : SysChangedOpen (Bool yes)

void
OPGrailWindow: :SysChangedVisible (Bool yes)

void
OPGrailWindow: : SysChangedReduced (Bool yes)

No special implementation.

Bool
0OPGrailWindow: :IsActive () const

No special implementation.

void
OPGrailWindow: :SetOrigin (OPCoord x, OPCoord y)

Xlib primitive used:

XMoveWindow

void
OPGrailWindow: :GetOrigin (OPCoordQOut x, OPCoordOut y) const

No special implementation.

void
OPGrailWindow: :SetSize (OPCoord dx, OPCoord dy)

Xlib primitive used:

XResizeWindow

void
OPGrailWindow: :GetSize (OPCoordOut dx, OPCoordOut dy) const

40

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

No special implementation.

void
OPGrailWindow: :UserChangedGeometry ()

Xlib primitives used:
XGetGeometry

XTranslateCoordinates

XTranslateCoordinates is used to get the absolute coordinates of the window.

void
OPGrailWindow: : GetFrameSize (OPCoordOut x1, OPCoordQut yt,
O0PCoord0Out xr, 0PCoordOut yb)

void

OPGrailWindow: : GetFrameSize (OPWindowStyle style,
0PCoordOut x1, 0PCoordOut yt,
OPCoordQut xr, 0PCoordOut yb)

Not implemented. X window can’t give the decoration size of the window man-
ager without specifying a window. The static method can’t be implemented. The
rest of the implementation is done in such a way that this it’s not a constraint.

void
OPGrailWindow: :BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailWindow: :BeginDraw (OPCoord x1, OPCoord yi,
OPCoord x2, 0PCoord y2)

Stores the rectangle coordinates in order to optimize the update done by EndDraw.

void
0PGrailWindow: :EndDraw ()

Just call Flush.

41

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void
0PGrailWindow: :Flush ()

Xlib primitives used:

XCopyArea
XFlush

Copy the rectangle modified between BeginDraw and EndDraw.

void
0PGrailWindow: :Redraw ()

Xlib primitives used:

XCopyGC
XSetClipRectangles
XCopyArea

Set the clip mask to the entire window and copy the whole pixmap. A tempo-
rary graphic context is created to hold the original clipmask.

Bool

OPGrailWindow: :FindOwnWindow (0OPCoord x, 0PCoord vy,
0PGrailWindowOut wdo,
Count index)

Xlib primitives used:

XTranslateCoordinates
XGetWindowProperty
XQueryTree
XGetWindowAttributes
XGetGeometry

Establish a list of all children of the root window, then traverse this list to find
which childs contain the given coordinate. Find the nth child and descent to the
most nested window, check if it is an OPaC window.

To improve performance, the topmost window is checked before the list travers-
ing. If it is the root window or a non-OPaC window, the method exits immediately.

3.2.4 Font

sd_grailfnt.cxx

0PGrailFont: :0PGrailFont ()

42

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

No special implementation.

0PGrailFont: : “0PGrailFont ()

No special implementation.

void
OPGrailFont: :Storelnstance (0PStorageln storage)

No special implementation.

void
OPGrailFont::RestoreInstance (0PStorageln storage)

No special implementation.

Bool
OPGrailFont::Initialise (0PStringIn name,
OPStringIn style, OPCoord size)

No special implementation.

Bool
0PGrailFont: :RealizeFont ()

Xlib primitive used:

XLoadFont

Since the font manager is not implemented, this method always realize the fixed
font.

void
OPGrailFont: :GetFontName (OPStringOut name) const

void
OPGrailFont::GetFontStyle (0PStringQut name) const

0PCoord
0PGrailFont: :ReturnFontSize () const

43

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

No special implementation.

0PRelCoord
0PGrailFont: :ReturnAscender () const

0PRelCoord
0PGrailFont: :ReturnDescender () const

Xlib primitive used:

XQueryTextExtents

0PCoord
0PGrailFont: :ReturnWidth (const LatinChar* text) const

0PCoord
OPGrailFont: :ReturnWidth (OPStringIn text) const

0PCoord
OPGrailFont: :ReturnWidth (OPStringIn text,
Count start, Count length) comnst

Xlib primitive used:

XQueryTextExtents

3.2.5 Mouse Cursor

sd_grailcur.cxx

0PGrailCursor: :0PGrailCursor ()

No special implementation.

0PGrailCursor: : “0PGrailCursor ()

No special implementation.

void

OPGrailCursor::Initialise (OPCoord hotx, OPCoord hoty,
0PCoord dx, 0PCoord dy,
OPGrailPixmaplIn fg,
0PCoord xf, 0PCoord yf,
0OPGrailPixmapln bg,
0PCoord xb, 0PCoord yb)

44

3. Report on Port of OPaC to Unix/X11 3.3. Event Handling

Xlib primitives used:

XCreatePixmap
XCreateGC
XCopyPlane
XCreatePixmapCursor
XFreeGC

XFreePixmap

Two bitmaps (pixmaps of depth 1) are created and passed to XCreatePixmapCursor.

void
0PGrailCursor: :Activate () const

Xlib primitive used:

XDefineCursor

void
0PGrailCursor: :ResetToNormal () const

Xlib primitive used:

XUndefineCursor

void
0PGrailCursor: :Hide () const

Xlib primitive used:

XDefineCursor

3.3 Event Handling

sd_event.cxx

3.3.1 Global functions

Some global functions have been defined in this file to help event handling. They
are called from WaitForEvent:

static OPGrailWindowx*
ReturnOPwinFromXwin(Window xwindow)

45

3. Report on Port of OPaC to Unix/X11 3.3. Event Handling

Given an X window id, return a pointer to the associated 0PGrailWindow struc-
ture. This is done using the window property storing the pointer (see page 38).

void

Set0PEventState(Card32& buttons,
Card32& modifiers,
unsigned int state)

Fills in the buttons and modifiers fields according to state field of X event.

void
HandleKeyEvent (OPKeyOut key, OPAtomRef name, XKeyEvent& xkey)

Fills in the OPKey structure and the name of key used according to the X key
event.
This is realized with a large switch statement inspecting the type of the X key.

3.3.2 Methods

void
OPEvent: :HandOverToWindow (0PWindowIn window)

Xlib primitive used:

XGrabPointer

OPEvent: :0PEvent ()

Initialise the file descriptor and the flags for the select function implementing
the timer (see the WaitForEvent method.

OPEvent: : "0PEvent ()

No special implementation.

Bool
OPEvent: :WaitForEvent ()

Xlib primitives used:

46

3. Report on Port of OPaC to Unix/X11 3.3. Event Handling

XPending
XNextEvent

This method uses the system function select with the file descriptor of the input
event stream. This allows to wait for an event for a given time. This implements
a timer; if the functions returns because of a timeout, a timer tick is sent to the
application, otherwise an user event occured and has to be treated. This gives the
priority to user events but leave enough time for the timer ticks.

The user events are handled in a switch statement, the associated window
structure is fetch via ReturnOPwinFromXwin.

Exposure event Call Redraw for the concerned window. Flushes the eventual
other exposure event from the queue.

Mouse events Use the SetOPEventState function to fill the button and modifiers
fields.

When a motion event is received, all the pending motion event are flushed from
the queue. This improves performance.

Keyboard events Use the SetOPEventState function to fill the button and
modifiers fields. Call HandleKeyEvent.

Configure notify This event occurs when the user or the window manager changes
the geometry of the window. UserChangedGeometry is called for the window.

Focus events Call the SysChangedActive method of the window when the focus
is got or lost.

Client message When a window is destroyed by the window manager or the
user, such an event occurs. If the data attribute of the event structure corresponds
to a certain atom, the PostQuitEvent method is called. All other client messages
are ignored.

void
OPEvent: :DispatchEvent ()

No special implementation.

void
OPEvent: :PostQuitEvent ()

Set to TRUE a global variable that is treated in the WaitForEvent method to
exit the event loop.

47

3. Report on Port of OPaC to Unix/X11

3.4. Color Manager

void
OPEvent::Initialise ()

No special implementation.

void
OPEvent::Kill ()

No special implementation.

3.4 Color Manager
sd_colman. cxx

OPColorMan: :0PColorMan ()

No special implementation.

OPColorMan: : "0PColorMan ()

No special implementation.

0PColorPixel

OPColorMan: :MakeTrueColor (Card8 r, Card8 g, Card8 b) const

Xlib primitive used:

XAllocColor

Bool

OPColorMan: :FindColor (OPColorPixel p,

Card80ut r, Card80ut g, Card80ut b) const

Xlib primitive used:

XQueryColor

3.5 Font Manager

sd_fontman.cxx

3. Report on Port of OPaC to Unix/X11

3.6. Memory

3.6 Memory

Bool
SysMemOpenZone (const LatinChar* name,
Card320ut zone_id)

No special implementation.

Bool
SysMemCloseZone (Card32In zone_id)

No special implementation.

Bool

SysMemAlloc (Card32In zone_id, Card32In size,
BytePtrOut ptr,
Card320ut allocated,
Card320ut mem_id)

Call to malloc.

Bool

SysMemFree (Card32In zone_id,
BytePtrIn ptr,
Card32In allocated,
Card32In mem_id)

Call to free.

3.7 File Input/Output

sd_file_io.cxx

OPaC_FileDesc
OPaC_OpenFileRead (OPStringIn name)

Call to system function open.

OPaC_FileDesc
OPaC_OpenFileWrite (OPStringIn name)

Call to system function open.

49

3. Report on Port of OPaC to Unix/X11 3.7. File Input/Output

OPaC_FileDesc
OPaC_OpenFileAppend (OPStringIn name)

Call to system function open.

Size
0PaC_ReadFile (0OPaC_FileDesc file, void* void_buffer, Size size)

Call to system function read.

Size
OPaC_WriteFile (0OPaC_FileDesc file,
const void* void_buffer, Size size)

Call to system function write.

Bool
OPaC_SeekFileAbs (OPaC_FileDesc file, Int32 offset)

Call to system function lseek.

Bool
OPaC_SeekFileRel (OPaC_FileDesc file, Int32 offset)

Call to system function lseek.

Size
OPaC_TellFilePos (DOPaC_FileDesc file)

Call to system function lseek.

Size
OPaC_TellFileSize (OPaC_FileDesc file)

Call to system function 11seek.

30

3. Report on Port of OPaC to Unix/X11 3.8. Startup

Bool
OPaC_FlushFile (0PaC_FileDesc file)

Call to system function fsync.

Bool
0PaC_TruncFile (OPaC_FileDesc file)

Call to system functions lseek and ftruncate.

Bool
0PaC_ResizeFile (0PaC_FileDesc file, Size size)

Call to system function ftruncate.

Bool
OPaC_CloseFile (OPaC_FileDesc file)

Call to system function close.

3.8 Startup

sd_main.cxx

The pointer to the display structure is declared in this file. The main function
calls XOpenDisplay an XCloseDisplay.
X window allows to open windows on different screens and hosts. This has
not been used in the implementation, since this doesn’t matches OPaC portability
philosophy

51

Chapter 4

Concluding with limitations

The port of the library showed that the time of software development is mostly
spent in tests and debugging. Since the features were not too complex, the coding
was not a long work. The asynchronous nature of X window leads to some of
tricky debugging situations. Hopefully, every problem was found a solution but
sometimes requiring a long investigation. The “spiral” approach discussed in the
introduction allowed to get a satisfying result. Though, some missing features need
to be implemented and some others have to be modified for better performance.
Some bugs and limitations are yet obvious at this stage of work:

e The bitplane operations used in O0PGrailCursor::Initialise and
in OPGrailPort: : CopyRect don’t give the expected results on some X servers.

e The startup takes too much time. Some initialisation stuff could be optimized
to reduce the number of queries to the server.

e The indexed color displays are not supported. As they tend to disappear,
they may never need to be supported...

e The font management is not implemented. For a fully portable system, OPaC
should use a system independent font package.

Inspite of these misgivings, OPaC is beginning to conquer open Unix world.
With some time spent in improving and supporting the library, the graphical inter-
face standards will have a new fellow, a dynamic one.

Laurent Bovet

February 9, 1998
Lausanne, Switzerland

92

Bibliography

[1] A. NYE, Xlib Programming Manual, O’Reilly & Associates Inc., USA, 1992.

[2] A. NYE, Xlib Reference Manual, Third Edition, O’Reilly & Associates Inc.,
USA, 1992.

33

Index

ActivateAsFrontWindow, 14, 39
Activate
0PGrailCursor::, 20, 45
BeginDraw
OPGrailPixmap::, 12, 37
OPGrailWindow: :, 16, 41
ChangeName, 14, 39
Close
O0PGrailWindow::, 14, 39
CopyRect, 10, 35
DispatchEvent, 25, 47
DrawAALineTo, 9, 34
DrawAALine, 9, 34
DrawDot, 8, 33
DrawHairLineTo, 9, 34
DrawHairLine, 9, 34
DrawLineDX, 8, 33
DrawLineDY, 8, 33
DrawLineToX, 8, 33
DrawLineToY, 8, 33
DrawRect, 9, 33
EndDraw

Kill
OPEvent: :, 25, 48
MakeTrueColor, 26, 48
OPColorMan, 26, 48
OPEvent, 24, 46
0PGrailCursor, 19, 44
OPGrailFont, 17, 43
OPGrailPixmap, 11, 36
0PGrailPort, 8, 33
OPGrailWindow, 12, 38
OP_EVENT KEY _DOWN, 22
OP_EVENT MOTION, 22
OP_EVENT_PRESS, 21
OP_EVENT RELEASE, 22
OP_TIMER_TICK, 24
OPaC_CloseFile, 29, 51
OPaC_FlushFile, 29, 51

OPaC_GrailPort BeginDraw, 6, 31

0PaC_GrailPort EndDraw, 6, 31
OPaC_GrailPort_Flush, 6, 31

OPaC_GrailPort_Initialise, 6, 31

OPaC_GrailPort Kill, 6, 31

OPGrailPixmap: :, 12, 37

OPGrailWindow::, 17, 41
FillRect, 9, 34
FindColor, 26, 48
FindOwnWindow, 17, 42

OPaC_GrailPort_SetBackColor, 7, 32
OPaC_GrailPort_SetClipRect, 7, 32
OPaC_GrailPort SetFont, 8, 32

0PaC_GrailPort_SetForeColor,7, 32
OPaC_GrailPort_SetLineStyle, 7, 32

Flush
OPGrailWindow::, 17, 42
GetFontName , 18, 44
GetFontStyle, 18, 44
GetFrameSize, 16, 41
GetOrigin, 15, 40
GetSize, 16, 41
HandOverToWindow, 24, 46
HandleKeyEvent, 46
Hide
OPGrailCursor: :, 20, 45
Initialise
OPEvent: :, 25, 48
0PGrailCursor::, 20, 45
0PGrailFont, 18, 43
OPGrailPixmap::, 12, 37
OPGrailWindow::, 13, 38
IsActive, 15, 40

54

OPaC_OpenFileAppend, 28, 50
OPaC_OpenFileRead, 27, 49
OPaC_OpenFileWrite, 28, 49
OPaC_ReadFile, 28, 50
OPaC_ResizeFile, 29, 51
OPaC_SeekFileAbs, 28, 50
OPaC_SeekFileRel, 28, 50
OPaC_TellFilePos, 29, 50
OPaC_TellFileSize, 29, 50
OPaC_TruncFile, 29, 51
OPaC WriteFile, 28, 50
Open
OPGrailWindow: :, 14, 39
PostQuitEvent, 24, 25, 47
RealizeFont, 18, 43
Redraw, 17, 24, 42
Reduce, 14, 39
ResetToNormal

INDEX

INDEX

0PGrailCursor::, 20, 45
Restorelnstance
OPGrailFont::, 18, 43
ReturnAscender, 19, 44
ReturnDescender, 19, 44
ReturnFontSize, 18, 44
ReturnOPwinFromXwin, 46
ReturnWidth
OPGrailFont:::, 19, 44
SetColorPixels, 11, 36
SetGrayPixels, 11, 36
SetOPEventState, 46
SetOrigin, 15, 40
SetRGBPixels, 11, 36
SetSize, 15, 40
ShowText, 10, 35
Storelnstance
OPGrailFont::, 18, 43
SysChangedActive, 15, 24, 40
SysChangedOpen, 15, 40
SysChangedReduced, 15, 24, 40
SysMemAlloc, 27, 49
SysMemCloseZone, 27, 49
SysMemFree, 27, 49
SysMemOpenZone, 27, 49
SystemGetRGBPixels, 12, 37
UserChangedGeometry, 16, 24, 41
WaitForEvent, 25, 46
~“0PColorMan, 26, 48
~0PEvent, 24, 46
“0PGrailCursor, 19, 44
“0PGrailFont, 17, 43
“0PGrailPixmap, 11, 36
~“0PGrailWindow, 13, 38
info, 6
sd_colman.cxx, 25, 48
sd_event.cxx, 20, 45
sd_file_io.cxx, 27, 49
sd_fontman. cxx, 26, 48
sd_grail.cxx, 9, 17, 30, 42
sd_grailcur.cxx, 19, 44
sd_grailpxm.cxx, 11, 36
sd_grailwdo.cxx, 12, 38
sd_interface.h, 4, 30
sdmain.cxx, 29, 51
sd_memory . cxx, 26

exposure event, 24

geometry
user changed, 24

timer, 24

35

