
OPaC: A Portable Graphical User

Interface

Portability Guide

and

Semester Project Report on Port to Unix/X11

Laurent Bovet

February 9, 1998

Contents

1 Introduction 2

1.1 Audience . 2
1.2 About this document . 2
1.3 OPaC in a word . 2

2 Portability Guide 4

2.1 Interface . 4
2.2 Graphic Interface Layer . 5

2.2.1 Drawing . 5
2.2.2 Pixmap . 11
2.2.3 Window . 12
2.2.4 Font . 17
2.2.5 Mouse Cursor . 19

2.3 Event Handling . 20
2.3.1 Mouse . 21
2.3.2 Keyboard . 22
2.3.3 Other events . 23
2.3.4 Methods . 24

2.4 Color Manager . 25
2.5 Font Manager . 26
2.6 Memory . 26
2.7 File Input/Output . 27
2.8 Startup . 29

3 Report on Port of OPaC to Unix/X11 30

3.1 Interface . 30
3.2 Graphic Interface Layer . 30

3.2.1 Drawing . 30
3.2.2 Pixmap . 36
3.2.3 Window . 38
3.2.4 Font . 42
3.2.5 Mouse Cursor . 44

3.3 Event Handling . 45
3.3.1 Global functions . 45
3.3.2 Methods . 46

3.4 Color Manager . 48
3.5 Font Manager . 48
3.6 Memory . 49
3.7 File Input/Output . 49
3.8 Startup . 51

4 Concluding with limitations 52

1

Chapter 1

Introduction

1.1 Audience

This document is intended to readers who want to know how to port the OPaC
Class Library to a new platform.

The reader should know the oriented object programming concepts and have
some basics of graphical user interface programming and X window.

It also describes the way it was done for Unix/X11 as a semester project at the
Laboratoire de Microinformatique of the Ecole Polytechnique F�ed�erale de Lausanne,
Switzerland.

This document is not a reference, nor a guide for development with OPaC. The
reader shall refer to the source code for information about the architecture of OPaC.

1.2 About this document

This document is divided into two chapters that have the same structure. The �rst
chapter is the portability guide. It describes the way to implement each feature of
the system dependent part of OPaC. The second chapter explains how each feature
of the system dependent part has been implemented for the port to Unix/X11, as
far it is not trivial.

1.3 OPaC in a word

The OPaC Class Library has been written in C++. It enables programmers to
dynamically edit their applications' user interfaces at run time, modifying their
look and behaviour in a few mouse clicks. This has been achieved thanks to dy-
namic object allocation and dynamic message passing, thus suppressing the need
for scripting.

The OPaC class library has been under development since 1990. OPaC started
as a wrapper library aimed at writing highly portable code by abstracting the
system's API into classes.

OPaC expanded to totally encompass the graphical user interface (GUI) : a
collection of widgets was implemented based only on low level graphic operations
and event handling was abstracted by de�ning a set of generic user events. In order
to reduce development time, a dynamic user interface editor was embedded into
OPaC, which allows the programmer and the end user to modify the interface even
while the application is running, changing not only its look but also its behaviour.

2

1. Introduction 1.3. OPaC in a word

The OPaC Library has been designed to be portable. The source code is split
into two categories: system dependent and system independent. This reduces port-
ing e�orts.

A lot of interesting features such as automatic memory recycling, garbage col-
lection, smart references, dynamic method invocation, automatic class registration,
etc. have been added in the process.

3

Chapter 2

Portability Guide

To port OPaC, one must create adequate data structure and write methods that
access these structures. These structures are described in this chapter, highlighting
what information it should content. Each method is referenced and its behaviour
described.

The system dependent �les are located in a sub-directory of sd/ named after
the speci�c system (e.g sd/linux). These �les are:

sd colman.cxx Color Manager
sd event.cxx Event Handling
sd file io.cxx File Input/Output
sd fontman.cxx Font Manager
sd grail.cxx Graphical Interface Layer (Grail) Drawing Methods
sd grailcur.cxx Grail Mouse Cursor
sd grailfnt.cxx Grail Font
sd grailpxm.cxx Grail Pixmap
sd grailwdo.cxx Grail Window
sd interface.h System dependent include �le
sd main.cxx Startup code
sd memory.cxx Memory

2.1 Interface

sd interface.h

This �le should include all header �les of the system API used by the system
dependent part. Put in this �le all global de�nitions and declaration the implemen-
tation will use.

It also declares the following underlaying structures that are encapsulated in
system independent structures:

1. OPaC GrPort

This contains all informations about a context. A context is a set of properties
for graphic outputs.

The �elds should include:

� A reference to the graphic area receiving the output, i.e. a window or an
o�-screen area

� Foreground drawing color

4

2. Portability Guide 2.2. Graphic Interface Layer

� Background drawing color

� Clipping region, i.e. a rectangular mask that constrains drawing inside
its bounds

� Current brush properties

� Current font properties

2. OPaC GrPixmap

This contains a reference to a pixmap, i.e. an o�-screen area where it is
possible to draw and store temporary pieces of graphics.

3. OPaC GrWindow

This contains a reference to a window. It also may contain information shared
by all the windows, such as a name used to identify which application a window
is from.

4. OPaC ColorMan

This should contain a reference to a color map or a palette for old indexed
color systems.

5. OPaC GrCursor

This contains a reference to a mouse cursor structure.

6. OPaC GrFont

This contains a reference to a font structure.

2.2 Graphic Interface Layer

OPaC uses double bu�ering for every output to the screen. Every drawing oper-
ation is performed on a pixmap having the same size than the actual window. The
pixmap is copied to the window each time it is needed; in case of new drawing and
if the window must be repaint.

So, the Grail must implement two kinds of \drawable" graphic area. One that
is o�-screen and commonly called pixmap and the other that is the actual window
on the visible screen. This one is never given drawing operations directly.

The OPGrailWindow class inherits from OPGrailPixmap which inherits from
OPGrailPort which is somewhat abstract.

The drawing methods apply to OPGrailPort objects. Because of double bu�er-
ing, the window class is just a pixmap class that adds window speci�c methods.

The class de�nitions are in OPaC/grail.h.

2.2.1 Drawing

sd grail.cxx

Global functions

void

OPaC_GrailPort_Initialise (OPaC_GrPort*& info,

OPColorPixel f,

OPColorPixel b)

5

2. Portability Guide 2.2. Graphic Interface Layer

Initialise an empty Grail Port.

info is a reference to the Initialised graphic context. More generally, info is a
pointer to the encapsulated system dependent structure.

f is the foreground color
b is the background color

void

OPaC_GrailPort_Kill (OPaC_GrPort*& info)

Free resources allocated in OPaC GrailPort Init

void

OPaC_GrailPort_BeginDraw (OPaC_GrPort* info,

int x1, int y1, int x2, int y2,

OPaC_ColorMan* cman)

Allocate resources and prepare the port for drawing output. This does not set
the clip mask or any attribute of the graphic context.

x1, y1, x2, y2 are coordinates of the rectangle where the drawing will take
place.

cman is a reference to the color manager used for this port and the following
drawing operations

void

OPaC_GrailPort_EndDraw (OPaC_GrPort* info)

Free resources allocated in OPaC GrailPort BeginDraw

void

OPaC_GrailPort_Flush (OPaC_GrPort* info)

Flush the graphical output. This forces the drawing operations to be executed
in case of queuing. This will not display the result on the screen, because of the
double bu�ering.

6

2. Portability Guide 2.2. Graphic Interface Layer

void

OPaC_GrailPort_SetClipRect (OPaC_GrPort* info,

int x1, int y1, int x2, int y2)

De�ne a clipping rectangle. This will be called only between a OPaC GrailPort BeginDraw

and a OPaC GrailPort EndDraw.
The clipping rectangle is a sub-area of the port that will accept a drawing op-

eration. Only the part of the drawing inside the clipping rectangle will be visible.

void

OPaC_GrailPort_SetForeColor (OPaC_GrPort* info,

OPColorPixel pixel,

OPColorManIn cman)

De�ne the foreground color. This will be called only between a OPaC GrailPort BeginDraw

and a OPaC GrailPort EndDraw.

void

OPaC_GrailPort_SetBackColor (OPaC_GrPort* info,

OPColorPixel pixel,

OPColorManIn cman)

De�ne the background color. This will be called only between a OPaC GrailPort BeginDraw

and a OPaC GrailPort EndDraw.

void

OPaC_GrailPort_SetLineStyle (OPaC_GrPort* info,

OPColorPixel pixel,

OPLineStyle style,

OPColorManIn cman)

De�ne the line style. This will be called only between a OPaC GrailPort BeginDraw

and a OPaC GrailPort EndDraw.
style can have the following values:

OP_LINE_SOLID ________

OP_LINE_DOT

OP_LINE_DASH __ __ __

7

2. Portability Guide 2.2. Graphic Interface Layer

void

OPaC_GrailPort_SetFont (OPaC_GrPort* info,

OPaC_GrFont* font_info)

De�ne the current font. This will be called only between a OPaC GrailPort BeginDraw

and a OPaC GrailPort EndDraw.

Target speci�c methods

void

OPGrailPort::DrawDot (OPCoord x, OPCoord y)

void

OPGrailPort::DrawDot (OPCoord x, OPCoord y, OPColorPixel color)

Draw a single pixel.

void

OPGrailPort::DrawLineDX (OPCoord x, OPCoord y, OPCoord dx)

void

OPGrailPort::DrawLineDY (OPCoord x, OPCoord y, OPCoord dy)

Draw a line (segment), using one of the prede�ned dash styles. The segment is
always hair thin... The last dot will be drawn.

A line length of 0 won't draw anything !

void

OPGrailPort::DrawLineToX (OPCoord x1, OPCoord y1, OPCoord x2)

void

OPGrailPort::DrawLineToY (OPCoord x1, OPCoord y1, OPCoord y2)

Draw a line (segment), using one of the prede�ned dash styles. The segment is
always hair thin... The last dot will be drawn.

A line with both extremities at the same location will draw just a single dot.

void

OPGrailPort::DrawRect (OPRectIn box, OPRelCoord margin)

8

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailPort::DrawRect (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Draw rectangular box. The bottom left corner will be drawn at [x2;y2]. This
might not be the case on every system, so be careful to implent this the OPaC way.

void

OPGrailPort::FillRect (OPRectIn box, OPRelCoord margin)

void

OPGrailPort::FillRect (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Fill a rectangular box. The surface drawn is exactly the same as with DrawRect.
Beware, this is usually not the case on other systems !!!

Be careful to implement this method the right way.

void

OPGrailPort::DrawHairLine (OPCoord x, OPCoord y,

OPCoord dx, OPCoord dy)

void

OPGrailPort::DrawHairLineTo (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Draw a line segment. The segment is always hair thin and is not dashed... The
last dot will be drawn.

void

OPGrailPort::DrawAALine (OPCoord x, OPCoord y,

OPCoord dx,OPCoord dy)

void

OPGrailPort::DrawAALineTo (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Draw a line segment with anti-aliasing. The segment is always hair thin and is
not dashed... The last dot will be drawn.

9

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailPort::ShowText (OPCoord x, OPCoord y, OPStringIn text,

Count start, Count length,

Card8 pos,

OPCoord dx)

void

OPGrailPort::ShowText (OPRectIn box, OPStringIn text,

Count start, Count length,

Card8 pos, OPRelCoord margin)

void

OPGrailPort::ShowText (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2,

OPStringIn text,

Count start, Count length,

Card8 pos)

Draw a piece of text, which will be extracted from a string starting at character
start and up to length characters. The way to position the text is speci�ed by
pos and dx is used if aligned positioning has been requested.

pos is a bitwise-ored combination of the following values:

OP_TEXT_HPOS_LEFT >Hello <

OP_TEXT_HPOS_CENTER > Hello <

OP_TEXT_HPOS_RIGHT > Hello<

OP_TEXT_HPOS_ALIGN >H e l l o<

OP_TEXT_VPOS_BASE use baseline as vertical ref.

OP_TEXT_VPOS_TOP use top border as vertical ref.

OP_TEXT_VPOS_CENTER use text middle as vertical ref.

OP_TEXT_VPOS_BOTTOM use bottom border as vertical ref.

pos analysis can be done using the following masks:

OP_TEXT_HPOS_MASK

OP_TEXT_VPOS_MASK

void

OPGrailPort::CopyRect (OPGrailPortIn source,

OPCoord source_x, OPCoord source_y,

OPCoord dest_x1, OPCoord dest_y1,

OPCoord dest_x2, OPCoord dest_y2)

OPGrailPort::CopyRect (OPGrailPortIn source,

OPCoord source_x, OPCoord source_y,

OPRectIn dest_box, OPRelCoord dest_margin)

Copy a rectangle from the source port to the current port, into the speci�ed
box, from the source position given by its top/left corner.

10

2. Portability Guide 2.2. Graphic Interface Layer

This will copy the pixels, including the one of the bottom right corner. This is
still the same policy as with the rectangle.

If the attribute use transparency of the port is set to TRUE, the color given by
the attribute transparent color must be considered as transparent.

void

OPGrailPort::SetColorPixels (OPCoord x, OPCoord y, OPCoord dx,

const OPColorPixel* pixels)

void

OPGrailPort::SetGrayPixels (OPCoord x, OPCoord y, OPCoord dx,

const Card8* intensity)

void

OPGrailPort::SetRGBPixels (OPCoord x, OPCoord y, OPCoord dx,

const Card8* red,

const Card8* green,

const Card8* blue)

SetColorPixels takes an array of dx or more pixels and draw them on a line
of the port beginning at x, y

SetGrayPixels takes an array of dx or more intensity values (0-255) draw them
on a line of the port beginning at x, y

SetRGBPixels takes three arrays of dx or more intensity values correponding to
red, green and blue components of a color, then draw them on a line of the port
beginning at x, y.

2.2.2 Pixmap

sd grailpxm.cxx

OPGrailPixmap::OPGrailPixmap ()

Initialise the Grail Pixmap instance. This won't allocate any bitmap; do this
using OPGrailPixmap::Initialise !

OPGrailPixmap::~OPGrailPixmap ()

Destroy cleanly a Pixmap : this will free an existing bitmap and associated data.

void

OPGrailPixmap::BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailPixmap::BeginDraw (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

11

2. Portability Guide 2.2. Graphic Interface Layer

Start drawing into the pixel map. Put here all allocations or initializations
needed by this operation. One can draw within a rectangle given an inner margin
or in a rectangle given by its coordinates.

void

OPGrailPixmap::EndDraw ()

End of drawing. Frees the resources allocated by BeginDraw.

void

OPGrailPixmap::Initialise (OPGrailPixmapIn window,

OPCoord dx,

OPCoord dy)

void

OPGrailPixmap::Initialise (Count depth, OPCoord dx, OPCoord dy)

Initialise a new pixel map. If one already existed, just delete it and start a
new. If window is not speci�ed, the default screen will be used as model. window

is actually from type OPGrailWindow that is inherited from OPGrailPixmap, hence
the type in the parameter list. The depth of the new pixmap must be set to the
depth of window or equal to depth in the second method.

Bool

OPGrailPixmap::SystemGetRGBPixels (OPCoord x, OPCoord y,

OPCoord dx,

Card8* r, Card8* g, Card8* b)

Reads dx pixels from a line of the pixmap beginning at x, y. The RGB values
of the pixels must be stored in the arrays r, g and b, respectively.

2.2.3 Window

sd grailwdo.cxx

OPGrailWindow::OPGrailWindow ()

Construct a new window instance. Allocate memory for encapsulated system
dependent structure and set empty values to attributes.

Initialise name attributes.

12

2. Portability Guide 2.2. Graphic Interface Layer

OPGrailWindow::~OPGrailWindow ()

Delete the window. Free any resourcees allocated by OPGrailWindow.

void

OPGrailWindow::Initialise (OPWindowIn view,

OPWindowStyle style,

OPStringIn name,

OPRectIn box, OPRelCoord margin)

void

OPGrailWindow::Initialise (OPWindowIn view,

OPWindowStyle style, OPStringIn name,

OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Create the real window but do not open it. style is a bitwise-ored value of the
following items:

Modes:

OP_WIN_NAKED naked window (no frame)

OP_WIN_NORMAL normal window without title

OP_WIN_TITLE normal window with title

Attributes:

OP_WIN_MOVE_OK window may be moved

OP_WIN_SIZE_OK window may be sized

OP_WIN_REDUCE_OK window may be reduced (iconified)

OP_WIN_CLOSE_OK window may be closed

Extended attributes:

OP_WIN_TRANSPARENT window should be transparent

OP_WIN_FLOAT_TOOL window should be considered as a tool

OP_WIN_TOP_LEVEL window should be always on top

These ags can be selected through the following masks:

OP_WIN_MODE_MASK mask for mode

OP_WIN_ATTR_MASK mask for attributes

OP_WIN_EXTEND_MASK mask for extended attributes

The actual system window is likely to store a pointer or a handle to the as-
sociated OPGrailWindow object. This can be done given that the system window
structure usually allows users to store associated data. This stored pointer will be
usefull to �nd the OPaC window structure given a system window.

13

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailWindow::ChangeName (OPStringIn name)

Select another name for the current window. This is only possible if the window
has been de�ned with a title bar.

void

OPGrailWindow::Open ()

Open an existing window on the screen. This is usually just a display command.
The following attributes must be set:

this->is_open = TRUE;

this->is_reduced = FALSE;

void

OPGrailWindow::Reduce ()

Minimize the window, i.e. reduce it to an icon. The following attributes must
be set:

this->is_open = TRUE;

this->is_reduced = TRUE;

void

OPGrailWindow::Close ()

Close the window. Do not destroy anything, just hide the window.
The following attributes must be set:

this->is_open = FALSE;

this->is_reduced = FALSE;

void

OPGrailWindow::ActivateAsFrontWindow (Bool front)

Give the focus to the window.
front speci�es if the window must be brought to the top.

14

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailWindow::SysChangedActive (Bool yes)

void

OPGrailWindow::SysChangedOpen (Bool yes)

void

OPGrailWindow::SysChangedVisible (Bool yes)

void

OPGrailWindow::SysChangedReduced (Bool yes)

This routines must set the attributes is active, is open and is reduced to
the right value. They also have to store information about the new state if needed.

Bool

OPGrailWindow::IsActive () const

Just return the active attribute...

void

OPGrailWindow::SetOrigin (OPCoord x, OPCoord y)

Set the window's origin. This will be reected immediately by the window man-
ager so that this can be used for dragging.

void

OPGrailWindow::GetOrigin (OPCoordOut x, OPCoordOut y) const

Return the origin of the window. Just use the bounding box attribute.

void

OPGrailWindow::SetSize (OPCoord dx, OPCoord dy)

Set the window size. The bounding box attribute must be updated according
to the new size.

15

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailWindow::GetSize (OPCoordOut dx, OPCoordOut dy) const

Return the window's size. Use the bounding box attribute.

void

OPGrailWindow::UserChangedGeometry ()

Get the new position and size of the window to �ll in the bounding box at-
tribute and call the UserChangedGeometry method of the nested view if the box
has changed.

void

OPGrailWindow::GetFrameSize (OPCoordOut xl, OPCoordOut yt,

OPCoordOut xr, OPCoordOut yb)

void

OPGrailWindow::GetFrameSize (OPWindowStyle style,

OPCoordOut xl, OPCoordOut yt,

OPCoordOut xr, OPCoordOut yb)

Return the frame size, i.e. the thickness of the decoration around the window
content that is given by the window manager. The second method is static and
can't currently be implemented on some systems. Some ports of OPaC don't im-
plement these methods.

void

OPGrailWindow::BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailWindow::BeginDraw (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Start drawing into the window. This will �rst draw to the double bu�ering
pixmap. These methods have to call super::BeginDraw in order to transmit the
message to the parent. Other information can be initialized by theses methods, as
the coordinates of the rectangle for further repainting.

16

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailWindow::EndDraw ()

Frees resources allocated in BeginDraw. It also has to call super::EndDraw.

void

OPGrailWindow::Flush ()

Send the graphic output to the screen. This should update the part of the screen
which has been changed between BeginDraw and EndDraw.

void

OPGrailWindow::Redraw ()

Redraw the window, i.e. copy the double bu�ering pixmap to the window.

Bool

OPGrailWindow::FindOwnWindow (OPCoord x, OPCoord y,

OPGrailWindowOut wdo,

Count index)

Find which window belonging to the application, if any, contains the speci-
�ed coordinate. It looks for the nth window (0 is the topmost). Return FALSE if no
OPaC window is found or if an OPaC window is overlapped by a non-OPaC window.

2.2.4 Font

sd grailfnt.cxx

OPGrailFont::OPGrailFont ()

Initialise the attributes to null values.

OPGrailFont::~OPGrailFont ()

Free resources allocated for the font.

17

2. Portability Guide 2.2. Graphic Interface Layer

void

OPGrailFont::StoreInstance (OPStorageIn storage)

Archive the properties of the font. This should save the name, style and size

attributes.

void

OPGrailFont::RestoreInstance (OPStorageIn storage)

Restore the attributes saved by StoreInstance.

Bool

OPGrailFont::Initialise (OPStringIn name,

OPStringIn style, OPCoord size)

Set the name, style and size attributes. Return the result of a call to RealizeFont
(see below).

Bool

OPGrailFont::RealizeFont ()

Allocate resources for the font. Load or choose the system font according to
the attributes set by Initialise. Return TRUE if the font has been realized, FALSE
otherwise.

void

OPGrailFont::GetFontName (OPStringOut name) const

void

OPGrailFont::GetFontStyle (OPStringOut name) const

OPCoord

OPGrailFont::ReturnFontSize () const

Just returns the attributes of the font.

18

2. Portability Guide 2.2. Graphic Interface Layer

OPRelCoord

OPGrailFont::ReturnAscender () const

OPRelCoord

OPGrailFont::ReturnDescender () const

Returns the size properties of the font. The ascender is the maximum distance
between the base line and the top of a character.

The descender is the maximum distance between the base line and the bottom
of a character. It is a negative value.

These are constants value for a given font.

OPCoord

OPGrailFont::ReturnWidth (const LatinChar* text) const

OPCoord

OPGrailFont::ReturnWidth (OPStringIn text) const

OPCoord

OPGrailFont::ReturnWidth (OPStringIn text,

Count start, Count length) const

Return the width of the given string written in the current font.

2.2.5 Mouse Cursor

sd grailcur.cxx

OPGrailCursor::OPGrailCursor ()

Set the attributes to null values.

OPGrailCursor::~OPGrailCursor ()

Free the resources allocated for the cursor.

void

OPGrailCursor::Initialise (OPCoord hotx, OPCoord hoty,

OPCoord dx, OPCoord dy,

OPGrailPixmapIn fg,

OPCoord xf, OPCoord yf,

OPGrailPixmapIn bg,

OPCoord xb, OPCoord yb)

19

2. Portability Guide 2.3. Event Handling

Initialise a cursor from the speci�ed pixmaps. The background will be opaque
wherever it is set to black. The foreground will be painted wherever a black back-
ground has been drawn.

The foreground and background pixmaps are extracted respectively from the
given pixmaps fg and bg. They both are dx by dy sized and are fetched at (xf, yf)
for the foreground and at (xb, yb) for the background.

(hotx, hoty) is the hotspot of the cursor.

void

OPGrailCursor::Activate () const

Make the cursor visible on the screen. This is not window dependent; the cursor
shape is changed for all windows.

void

OPGrailCursor::ResetToNormal () const

Switch back to default cursor.

void

OPGrailCursor::Hide () const

Remove any cursor from the screen.

2.3 Event Handling

sd event.cxx

The event handling is implemented through the WaitForEvent method of the
OPEvent class. This class is instanciated once only to create the current event
object. WaitForEvent �lls in this object as soon as a system event occurs.

The attributes of the event to �ll are:

Card32 type; // event type

Card32 id; // event unique ID

OPWindowRef window; // window in which event occurred

OPRelCoord x; // pointer: horizontal position (wdo relative)

OPRelCoord y; // pointer: vertical position (wdo relative)

Card32 buttons; // pointer: set of current buttons

20

2. Portability Guide 2.3. Event Handling

Card32 change; // specific: change (button, key, etc)

OPObjectRef data; // specific: data (user data, etc)

OPAtomRef name; // specific: name (key name, etc)

Card32 code; // specific: code (OEM code, etc)

OPKey key; // keyboard: shift, control & meta keys

The following paragraphs describe how to �ll the event structure for each type
of event listed below:

OP_EVENT_NONE no event - used internally

OP_EVENT_PRESS pointing device: button pressed

OP_EVENT_RELEASE pointing device: button released

OP_EVENT_MOTION pointing device: moved

OP_EVENT_KEY_DOWN keyboard: key pressed

OP_EVENT_KEY_REP keyboard: automatic key repetition

OP_EVENT_KEY_UP keyboard: key released

OP_EVENT_KEY_CHANGE keyboard: one shift/modifier changed

The key attribute is a structure composed by the following attributes:

Card8 type; // key type (either alphanumeric or special)

Card8 code; // special key code (ASCII upper case)

Card16 value; // Unicode key value or other special value

Card32 modifiers; // associated extra modifiers

The key.modifiers attribute is a bitwise-ored combination of the following
values:

OP_EV_SHIFT

OP_EV_CONTROL

OP_EV_CAPS_LOCK

OP_EV_META_1

OP_EV_META_2

OP_EV_META_3

OP_EV_META_4

OP_EV_META_5

The class and constants de�nitions are in OPaC/event.h and OPaC/key.h

2.3.1 Mouse

Each mouse action is reported by an event.

OP EVENT PRESS A mouse button is pressed. The following attributes must be set:
window, x, y, buttons, change, key.

buttons is the state of the mouse buttons represented by a bitwise-ored combi-
nation of the following values:

21

2. Portability Guide 2.3. Event Handling

OP_EV_BUTTON_LEFT

OP_EV_BUTTON_MIDDLE

OP_EV_BUTTON_RIGHT

change is a bit �eld showing which button has been changed. It is one of the
above values.

key must be updated. Only the modifiers attribute has to be set. The others
have no sense for a mouse event.

OP EVENT RELEASE A mouse button is released.
The attributes to set are the same as for OP EVENT PRESS.

OP EVENT MOTION The mouse is moved.
The following attributes must be set: window, x, y, buttons, key. They all have

the same meaning as for the other mouse events.

2.3.2 Keyboard

OP EVENT KEY DOWN A key is pressed. The following attributes must be set: window,
x, y, buttons, change, key.

change is a bit �eld showing which modi�ers have been changed since last event.
This is a bitwise-ored combination of the following values:

OP_EV_SHIFT

OP_EV_CONTROL

OP_EV_CAPS_LOCK

OP_EV_META_1

OP_EV_META_2

OP_EV_META_3

OP_EV_META_4

OP_EV_META_5

key.modifiers is the current modi�ers state.
key.type is one of the following values, according to the kind of key pressed:

OP_KEY_NONE no key :-)

OP_KEY_SPECIAL special key (PRINT SCRN, MACRO, UNDO...)

OP_KEY_ALPHANUM any character

OP_KEY_FUNCTION function keys F0..Fn

OP_KEY_RETURN return key (that's the "<-+" key")

OP_KEY_ENTER extended enter key (numeric key pad)

OP_KEY_TAB tabulation key

OP_KEY_BACKSPACE backspace (that's the "<--" key)

OP_KEY_DELETE delete forward character

OP_KEY_CURSOR cursor (up/down/left/right/page/home...

For any key to which corresponds a Latin-1 character, use the OP KEY ALPHANUM

type. key.valuemust be set to this character. key.codemust be set to the upper-
case version of this character, if any. key.name is left empty.

22

2. Portability Guide 2.3. Event Handling

For the common keys, i.e. return, enter, tab, backspace and delete, use the cor-
responding type and set the key.name attribute to the type string without OP KEY

before. key.code and key.value are left empty.

For the cursor keys, use the OP KEY CURSOR type. Fill in the key.code attribute
with the corresponding value listed below:

OP_CURSOR_SPECIAL machine specific cursor key

OP_CURSOR_UP move one line up

OP_CURSOR_DOWN move one line down

OP_CURSOR_LEFT move one character left

OP_CURSOR_RIGHT move one character right

OP_CURSOR_PAGE_UP move one page up

OP_CURSOR_PAGE_DOWN move one page down

OP_CURSOR_HOME move to line beginning

OP_CURSOR_END move to line end

OP_CURSOR_TOP move to document top

OP_CURSOR_BOTTOM move to document bottom

key.name must be set to the type string without OP CURSOR before and replace
underscore characters by spaces. key.value is left empty.

Treat the numeric keypad like the other character keys. OPaC need not to see
the di�erence.

For the function keys, use the OP KEY FUNCTION type. Set the key.name at-
tribute to "Fxx" where xx is the value written on the function key. The key.code
and key.value are left empty.

Any other key that should be handled is considered as a special key and has
OP KEY SPECIAL type. Set the key.name attribute to the following values for the
usual keys:

"CLEAR"

"ESCAPE"

"EXECUTE"

"HELP"

"INSERT"

"NUM LOCK"

"PAUSE"

"PRINT"

"RETURN"

"SELECT"

"SEPARATOR"

The key.code and key.value are left empty.

2.3.3 Other events

Some other events have to be treated:

23

2. Portability Guide 2.3. Event Handling

Timer In order to provide some computing while waiting user events, a timer
event must be given periodically. Its type must be set to OP TIMER TICK. The
period should be about 50 milliseconds. The other attributes remain empty.

Exposure Some systems give the responsability to the program to repaint the
window after being hidden by aother window. They usually provide an event to
notify that the window should be entirely or partially repainted.

No OPaC event exists to perform this operation. When an event like that is
received, the Redraw method of the window must be called.

Size and position When the user or the window manager changes the geometry
of the window, the event handler must call the UserChangedGeometry method of
the modi�ed window. A window iconi�cation has to be noti�ed through a call to
its SysChangedReduced method.

Focus When a window gets or looses the focus, it should be noti�ed through a
call to its SysChangedActive method.

Close When the user or the window manager tries to kill a window, the event
handler should call the PostQuitEvent method of the current event object. This
leads to the end of the application.

2.3.4 Methods

void

OPEvent::HandOverToWindow (OPWindowIn window)

Hand the event capture from the current window to the speci�ed one. This may
be useful if some dragging op creates a new window and needs to give it the focus.

OPEvent::OPEvent ()

Initialise an event record. As only one OPEvent object exists, this method is
called once only.

OPEvent::~OPEvent ()

Destroy the event. Free resources allocated in OPEvent::Initialise.

Bool

OPEvent::WaitForEvent ()

24

2. Portability Guide 2.4. Color Manager

This is the main method. It waits for system events and �lls in the attributes
as described above. This is usually a big switch statement.

void

OPEvent::DispatchEvent()

Just call the system independent DispatchEvent method of the window con-
cerned by the event.

void

OPEvent::PostQuitEvent ()

Indicate that the application has to quit. This has to lead to set the is dead

attribute of the event object to TRUE.

void

OPEvent::Initialise ()

Allocate resource for the event object. As only one OPEvent object exists, this
method is called once only.

void

OPEvent::Kill ()

Clean up before exiting the application.

2.4 Color Manager

sd colman.cxx

The color manager should detect the type of display to choose a color model and,
if needed, use a colormap. This system dependent part interfaces the OPaC color
manager to the underlaying color system of the speci�c platform.

The class de�nition is in OPaC/grail.h

OPColorMan::OPColorMan ()

25

2. Portability Guide 2.5. Font Manager

Initialise a color manager. Determine if it will have to use an indexed or a true
color model.

This method must call ComputeNearestColor to set up a table for gray levels.
ComputeNearestColor is a system independent method.

OPColorMan::~OPColorMan ()

Clean up the color manager.

OPColorPixel

OPColorMan::MakeTrueColor (Card8 r, Card8 g, Card8 b) const

Return the pixel value for the RGB components. This will be used to get a true
color pixel representation.

Bool

OPColorMan::FindColor (OPColorPixel p,

Card8Out r, Card8Out g, Card8Out b) const

Return the color components from a pixel value.

2.5 Font Manager

sd fontman.cxx

The font manager registers the system fonts. A database is build by the con-
structor OPFontMan::OPFontMan.

Since the properties and the name of fonts are system speci�c, this section is not
extensively documented. In the future, OPaC should provide or use an universal
font system, such as True Type or a custom system.

To port OPaC without implementing the font manager, leave sd fontman.cxx

empty and implement OPGrailFont::RealizeFont (p. 18) to always realize the
default font.

2.6 Memory

sd memory.cxx The memory manager allocates system memory. This is easily im-
plemented on systems that provide entire virtual space memory allocation. Some
systems need special handling for allocation, this special handling has to be treated
in this �le.

26

2. Portability Guide 2.7. File Input/Output

Bool

SysMemOpenZone (const LatinChar* name,

Card32Out zone_id)

Create a system zone if the system uses allocation zones.

Bool

SysMemCloseZone (Card32In zone_id)

Close a memory zone.

Bool

SysMemAlloc (Card32In zone_id, Card32In size,

BytePtrOut ptr,

Card32Out allocated,

Card32Out mem_id)

Allocate memory in the speci�ed zone.

Bool

SysMemFree (Card32In zone_id,

BytePtrIn ptr,

Card32In allocated,

Card32In mem_id)

The memory free function will have to free the memory which has been allocated
previously by SysMemAlloc.

2.7 File Input/Output

sd file io.cxx These �le functions handle access to �les. They should not be
di�cult to implement on a common system, since sequential �le access is popular.

OPaC_FileDesc

OPaC_OpenFileRead (OPStringIn name)

Open a �le for reading in it.

27

2. Portability Guide 2.7. File Input/Output

OPaC_FileDesc

OPaC_OpenFileWrite (OPStringIn name)

Open a �le for writing in it.

OPaC_FileDesc

OPaC_OpenFileAppend (OPStringIn name)

Open a �le for appending data to it.

Size

OPaC_ReadFile (OPaC_FileDesc file, void* void_buffer, Size size)

Read a chunk of data from an open �le.

Size

OPaC_WriteFile (OPaC_FileDesc file,

const void* void_buffer, Size size)

Write a chunk of data to a �le.

Bool

OPaC_SeekFileAbs (OPaC_FileDesc file, Int32 offset)

Move the reading/writing head offset bytes from the beginning of the �le.

Bool

OPaC_SeekFileRel (OPaC_FileDesc file, Int32 offset)

Move the reading/writing head offset bytes from the current position. offset
can be negative.

28

2. Portability Guide 2.8. Startup

Size

OPaC_TellFilePos (OPaC_FileDesc file)

Returns the position of the reading/writing head from the beginning of the �le.

Size

OPaC_TellFileSize (OPaC_FileDesc file)

Returns the �le size.

Bool

OPaC_FlushFile (OPaC_FileDesc file)

Synchronize the in-memory �le and the stored version. Flush all read/write
bu�ers.

Bool

OPaC_TruncFile (OPaC_FileDesc file)

Truncate the �le at he current reading/writing head position.

Bool

OPaC_ResizeFile (OPaC_FileDesc file, Size size)

Truncate the �le at most size bytes.

Bool

OPaC_CloseFile (OPaC_FileDesc file)

Close the open �le.

2.8 Startup

sd main.cxx

This �le contains the main() function. This function should contain all the
initialisations that have to be made before all and which are system dependent.
OPaC MainInit must be called to create the application.

29

Chapter 3

Report on Port of OPaC to

Unix/X11

This chapter explains how the port was done to Unix/X11. The development has
been done under Linux with gcc. The Xlib programming has been realized with the
help of O'Reilly & Associates X window guides [1, 2].

A \spiral" approach has been chosen, it means that the features have been
iteratively implemented through several passes. The goal of the �rst pass was to get
the Builder application (provided with OPaC Class Library) to work. The methods
have been implemented the simpliest way as possible. Each next pass improved the
quality of the implementation in matters of speci�cation matching and performance
optimisation. The product, at the time this document has been written is valid for
a wide range of applications to run under Linux. Further development should be
done to get a full Unix portable version. See chapter 4 for the limitations and bugs
of the current version.

Each feature of the portability guide is described in this chapter explaining
which Xlib primitives has been used and, the way some tricky parts have been
implemented.

This should help the programmer who want to port OPaC to a new platform
and is a basis for further development on the port to Unix.

The reader shall refer to the source for implementation details.

3.1 Interface

sd interface.h

Since OPaC design has been inspired by some X concepts, the structures of the
library and those of Xlib are quite similar.

Some #define symbols are common to OPaC and Xlib. They have been rede-
�ned in the interface �le.

3.2 Graphic Interface Layer

3.2.1 Drawing

sd grail.cxx

30

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

Global functions

void

OPaC_GrailPort_Initialise (OPaC_GrPort*& info,

OPColorPixel f,

OPColorPixel b)

Xlib primitive used:

XCreateGC

void

OPaC_GrailPort_Kill (OPaC_GrPort*& info)

Xlib primitive used:

XFreeGC

void

OPaC_GrailPort_BeginDraw (OPaC_GrPort* info,

int x1, int y1, int x2, int y2,

OPaC_ColorMan* cman)

No special implementation.

void

OPaC_GrailPort_EndDraw (OPaC_GrPort* info)

No special implementation.

void

OPaC_GrailPort_Flush (OPaC_GrPort* info)

Xlib primitive used:

XFlush

void

OPaC_GrailPort_SetClipRect (OPaC_GrPort* info,

int x1, int y1, int x2, int y2)

31

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

Xlib primitive used:

XSetClipRectangles

void

OPaC_GrailPort_SetForeColor (OPaC_GrPort* info,

OPColorPixel pixel,

OPColorManIn cman)

Xlib primitive used:

XSetForeground

void

OPaC_GrailPort_SetBackColor (OPaC_GrPort* info,

OPColorPixel pixel,

OPColorManIn cman)

Xlib primitive used:

XSetBackground

void

OPaC_GrailPort_SetLineStyle (OPaC_GrPort* info,

OPColorPixel pixel,

OPLineStyle style,

OPColorManIn cman)

Xlib primitives used:

XSetDashes

XSetForeground

XSetLineAttributes

void

OPaC_GrailPort_SetFont (OPaC_GrPort* info,

OPaC_GrFont* font_info)

Xlib primitive used:

XLoadFont

XSetFont

32

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

Target speci�c methods

void

OPGrailPort::DrawDot (OPCoord x, OPCoord y)

void

OPGrailPort::DrawDot (OPCoord x, OPCoord y, OPColorPixel color)

Xlib primitive used:

XDrawPoint

void

OPGrailPort::DrawLineDX (OPCoord x, OPCoord y, OPCoord dx)

void

OPGrailPort::DrawLineDY (OPCoord x, OPCoord y, OPCoord dy)

Xlib primitive used:

XDrawLine

void

OPGrailPort::DrawLineToX (OPCoord x1, OPCoord y1, OPCoord x2)

void

OPGrailPort::DrawLineToY (OPCoord x1, OPCoord y1, OPCoord y2)

Xlib primitive used:

XDrawLine

void

OPGrailPort::DrawRect (OPRectIn box, OPRelCoord margin)

void

OPGrailPort::DrawRect (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Xlib primitive used:

XDrawRectangle

33

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void

OPGrailPort::FillRect (OPRectIn box, OPRelCoord margin)

void

OPGrailPort::FillRect (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Xlib primitive used:

XFillRectangle

void

OPGrailPort::DrawHairLine (OPCoord x, OPCoord y,

OPCoord dx, OPCoord dy)

void

OPGrailPort::DrawHairLineTo (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Xlib primitive used:

XDrawLine

void

OPGrailPort::DrawAALine (OPCoord x, OPCoord y,

OPCoord dx,OPCoord dy)

void

OPGrailPort::DrawAALineTo (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Not implemented. Use XDrawLine.

void

OPGrailPort::ShowText (OPCoord x, OPCoord y, OPStringIn text,

Count start, Count length,

Card8 pos,

OPCoord dx)

void

OPGrailPort::ShowText (OPRectIn box, OPStringIn text,

Count start, Count length,

Card8 pos, OPRelCoord margin)

void

34

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

OPGrailPort::ShowText (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2,

OPStringIn text,

Count start, Count length,

Card8 pos)

Xlib primitives used:

XQueryTextExtents

XDrawString

First queries the X server for the geometry of the string to display in the current
font to align it according to the style wanted.

The �rst method do the actual system calls, the others call the �rst.

void

OPGrailPort::CopyRect (OPGrailPortIn source,

OPCoord source_x, OPCoord source_y,

OPCoord dest_x1, OPCoord dest_y1,

OPCoord dest_x2, OPCoord dest_y2)

OPGrailPort::CopyRect (OPGrailPortIn source,

OPCoord source_x, OPCoord source_y,

OPRectIn dest_box, OPRelCoord dest_margin)

Xlib primitives used:

XFillRectangle

XCopyArea

XCopyPlane

XCreateGC

XCreatePixmap

XFreeGC

XFreePixmap

XCopyArea performs a copy without transparency. For transparency support,
the following process has been used:

� Create a colormask pixmap that is initially �lled with the transparent color

� Merge the source to the colormask in order to an image where transparent
pixels are white and others are not white

� Create a clipmask (pixmap of only one bitplane) from the colormask by merg-
ing the planes. The result is a bitmap with white pixels for the transparent
color and black for the others

� Invert the clipmask

� Initialize a temporary pixmap identical to the destination

� Copy the source to a temporary pixmap using the clipmask

35

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

� Eventually copy the temporary pixmap to the destination

The use of the temporary pixmap is needed to hold the clipmask of the destina-
tion to its original shape.

void

OPGrailPort::SetColorPixels (OPCoord x, OPCoord y, OPCoord dx,

const OPColorPixel* pixels)

void

OPGrailPort::SetGrayPixels (OPCoord x, OPCoord y, OPCoord dx,

const Card8* intensity)

void

OPGrailPort::SetRGBPixels (OPCoord x, OPCoord y, OPCoord dx,

const Card8* red,

const Card8* green,

const Card8* blue)

Xlib primitives used for SetColorPixels:

XSetForeground

XDrawPoint

Xlib primitives used for SetRGBPixels:

XAllocColor

XPutPixel

XPutImage

XDestroyImage

SetGrayPixels calls SetRGPPixels
SetRGBPixelswrites into an XImage structure that is local to the client. It only

allocates colors once by storing them in an array. This is e�cient for pixel lines
that use a few colors. When the image is drawn, it is sent in one request to the server.

3.2.2 Pixmap

sd grailpxm.cxx

OPGrailPixmap::OPGrailPixmap ()

No special implementation.

OPGrailPixmap::~OPGrailPixmap ()

Xlib primitive used:

36

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

XFreePixmap

void

OPGrailPixmap::BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailPixmap::BeginDraw (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

No special implementation.

void

OPGrailPixmap::EndDraw ()

No special implementation.

void

OPGrailPixmap::Initialise (OPGrailPixmapIn window,

OPCoord dx,

OPCoord dy)

void

OPGrailPixmap::Initialise (Count depth, OPCoord dx, OPCoord dy)

Xlib primitives used:

XCopyGC

XCreatePixmap

XDefaultDepth

Bool

OPGrailPixmap::SystemGetRGBPixels (OPCoord x, OPCoord y,

OPCoord dx,

Card8* r, Card8* g, Card8* b)

Xlib primitives used:

XGetImage

XDestroyImage

XQueryColors

Fetch the whole line in one request by using an XImage structure, get the color
values in one call, then traverse the color array to �ll the given arrays.

37

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

3.2.3 Window

sd grailwdo.cxx

OPGrailWindow::OPGrailWindow ()

OPGrailWindow::~OPGrailWindow ()

Xlib primitives used:

XDestroyWindow

XWindowEvent

Destroy the window, then a loop wait for all the pending events associated with
the window up to the noti�cation insuring that the window has been destroyed.
This work is done to avoid receiving events associated with the window after it was
destroyed.

void

OPGrailWindow::Initialise (OPWindowIn view,

OPWindowStyle style,

OPStringIn name,

OPRectIn box, OPRelCoord margin)

void

OPGrailWindow::Initialise (OPWindowIn view,

OPWindowStyle style, OPStringIn name,

OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Xlib primitives used:

XCreateSimpleWindow

XSetWMSizeHints

XSetWMProtocols

XChangeWindowAttributes

XStoreName

XChangeProperty

XSelectInput

The window is created and its size set according to the given window style.
The name is stored as well as the id and a numeric value that is the adress of the
OPGrailWindow structure. It is stored as a string to support architectures that have
di�erent adress spaces. These informations are stored as window properties, in X
jargon. They are accessible via atoms. Later, the presence of the properties can be
checked to determine if a window is an OPaC window.

An event mask is set for the new window, it speci�es what kind of events are
sent for this window.

38

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void

OPGrailWindow::ChangeName (OPStringIn name)

Xlib primitive used:

XStoreName

void

OPGrailWindow::Open ()

Xlib primitive used:

XMapWindow

void

OPGrailWindow::Reduce ()

Xlib primitive used:

IconifyWindow

void

OPGrailWindow::Close ()

Xlib primitive used:

XUnmapWindow

void

OPGrailWindow::ActivateAsFrontWindow (Bool front)

Xlib primitive used:

XSetInputFocus

39

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void

OPGrailWindow::SysChangedActive (Bool yes)

void

OPGrailWindow::SysChangedOpen (Bool yes)

void

OPGrailWindow::SysChangedVisible (Bool yes)

void

OPGrailWindow::SysChangedReduced (Bool yes)

No special implementation.

Bool

OPGrailWindow::IsActive () const

No special implementation.

void

OPGrailWindow::SetOrigin (OPCoord x, OPCoord y)

Xlib primitive used:

XMoveWindow

void

OPGrailWindow::GetOrigin (OPCoordOut x, OPCoordOut y) const

No special implementation.

void

OPGrailWindow::SetSize (OPCoord dx, OPCoord dy)

Xlib primitive used:

XResizeWindow

void

OPGrailWindow::GetSize (OPCoordOut dx, OPCoordOut dy) const

40

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

No special implementation.

void

OPGrailWindow::UserChangedGeometry ()

Xlib primitives used:

XGetGeometry

XTranslateCoordinates

XTranslateCoordinates is used to get the absolute coordinates of the window.

void

OPGrailWindow::GetFrameSize (OPCoordOut xl, OPCoordOut yt,

OPCoordOut xr, OPCoordOut yb)

void

OPGrailWindow::GetFrameSize (OPWindowStyle style,

OPCoordOut xl, OPCoordOut yt,

OPCoordOut xr, OPCoordOut yb)

Not implemented. X window can't give the decoration size of the window man-
ager without specifying a window. The static method can't be implemented. The
rest of the implementation is done in such a way that this it's not a constraint.

void

OPGrailWindow::BeginDraw (OPRectIn box, OPRelCoord margin)

void

OPGrailWindow::BeginDraw (OPCoord x1, OPCoord y1,

OPCoord x2, OPCoord y2)

Stores the rectangle coordinates in order to optimize the update done by EndDraw.

void

OPGrailWindow::EndDraw ()

Just call Flush.

41

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

void

OPGrailWindow::Flush ()

Xlib primitives used:

XCopyArea

XFlush

Copy the rectangle modi�ed between BeginDraw and EndDraw.

void

OPGrailWindow::Redraw ()

Xlib primitives used:

XCopyGC

XSetClipRectangles

XCopyArea

Set the clip mask to the entire window and copy the whole pixmap. A tempo-
rary graphic context is created to hold the original clipmask.

Bool

OPGrailWindow::FindOwnWindow (OPCoord x, OPCoord y,

OPGrailWindowOut wdo,

Count index)

Xlib primitives used:

XTranslateCoordinates

XGetWindowProperty

XQueryTree

XGetWindowAttributes

XGetGeometry

Establish a list of all children of the root window, then traverse this list to �nd
which childs contain the given coordinate. Find the nth child and descent to the
most nested window, check if it is an OPaC window.

To improve performance, the topmost window is checked before the list travers-
ing. If it is the root window or a non-OPaC window, the method exits immediately.

3.2.4 Font

sd grailfnt.cxx

OPGrailFont::OPGrailFont ()

42

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

No special implementation.

OPGrailFont::~OPGrailFont ()

No special implementation.

void

OPGrailFont::StoreInstance (OPStorageIn storage)

No special implementation.

void

OPGrailFont::RestoreInstance (OPStorageIn storage)

No special implementation.

Bool

OPGrailFont::Initialise (OPStringIn name,

OPStringIn style, OPCoord size)

No special implementation.

Bool

OPGrailFont::RealizeFont ()

Xlib primitive used:

XLoadFont

Since the font manager is not implemented, this method always realize the fixed
font.

void

OPGrailFont::GetFontName (OPStringOut name) const

void

OPGrailFont::GetFontStyle (OPStringOut name) const

OPCoord

OPGrailFont::ReturnFontSize () const

43

3. Report on Port of OPaC to Unix/X11 3.2. Graphic Interface Layer

No special implementation.

OPRelCoord

OPGrailFont::ReturnAscender () const

OPRelCoord

OPGrailFont::ReturnDescender () const

Xlib primitive used:

XQueryTextExtents

OPCoord

OPGrailFont::ReturnWidth (const LatinChar* text) const

OPCoord

OPGrailFont::ReturnWidth (OPStringIn text) const

OPCoord

OPGrailFont::ReturnWidth (OPStringIn text,

Count start, Count length) const

Xlib primitive used:

XQueryTextExtents

3.2.5 Mouse Cursor

sd grailcur.cxx

OPGrailCursor::OPGrailCursor ()

No special implementation.

OPGrailCursor::~OPGrailCursor ()

No special implementation.

void

OPGrailCursor::Initialise (OPCoord hotx, OPCoord hoty,

OPCoord dx, OPCoord dy,

OPGrailPixmapIn fg,

OPCoord xf, OPCoord yf,

OPGrailPixmapIn bg,

OPCoord xb, OPCoord yb)

44

3. Report on Port of OPaC to Unix/X11 3.3. Event Handling

Xlib primitives used:

XCreatePixmap

XCreateGC

XCopyPlane

XCreatePixmapCursor

XFreeGC

XFreePixmap

Two bitmaps (pixmaps of depth 1) are created and passed to XCreatePixmapCursor.

void

OPGrailCursor::Activate () const

Xlib primitive used:

XDefineCursor

void

OPGrailCursor::ResetToNormal () const

Xlib primitive used:

XUndefineCursor

void

OPGrailCursor::Hide () const

Xlib primitive used:

XDefineCursor

3.3 Event Handling

sd event.cxx

3.3.1 Global functions

Some global functions have been de�ned in this �le to help event handling. They
are called from WaitForEvent:

static OPGrailWindow*

ReturnOPwinFromXwin(Window xwindow)

45

3. Report on Port of OPaC to Unix/X11 3.3. Event Handling

Given an X window id, return a pointer to the associated OPGrailWindow struc-
ture. This is done using the window property storing the pointer (see page 38).

void

SetOPEventState(Card32& buttons,

Card32& modifiers,

unsigned int state)

Fills in the buttons and modifiers �elds according to state �eld of X event.

void

HandleKeyEvent(OPKeyOut key, OPAtomRef name, XKeyEvent& xkey)

Fills in the OPKey structure and the name of key used according to the X key
event.

This is realized with a large switch statement inspecting the type of the X key.

3.3.2 Methods

void

OPEvent::HandOverToWindow (OPWindowIn window)

Xlib primitive used:

XGrabPointer

OPEvent::OPEvent ()

Initialise the �le descriptor and the ags for the select function implementing
the timer (see the WaitForEvent method.

OPEvent::~OPEvent ()

No special implementation.

Bool

OPEvent::WaitForEvent ()

Xlib primitives used:

46

3. Report on Port of OPaC to Unix/X11 3.3. Event Handling

XPending

XNextEvent

This method uses the system function selectwith the �le descriptor of the input
event stream. This allows to wait for an event for a given time. This implements
a timer; if the functions returns because of a timeout, a timer tick is sent to the
application, otherwise an user event occured and has to be treated. This gives the
priority to user events but leave enough time for the timer ticks.

The user events are handled in a switch statement, the associated window
structure is fetch via ReturnOPwinFromXwin.

Exposure event Call Redraw for the concerned window. Flushes the eventual
other exposure event from the queue.

Mouse events Use the SetOPEventState function to �ll the button and modifiers
�elds.

When a motion event is received, all the pending motion event are ushed from
the queue. This improves performance.

Keyboard events Use the SetOPEventState function to �ll the button and
modifiers �elds. Call HandleKeyEvent.

Con�gure notify This event occurs when the user or the windowmanager changes
the geometry of the window. UserChangedGeometry is called for the window.

Focus events Call the SysChangedActivemethod of the window when the focus
is got or lost.

Client message When a window is destroyed by the window manager or the
user, such an event occurs. If the data attribute of the event structure corresponds
to a certain atom, the PostQuitEvent method is called. All other client messages
are ignored.

void

OPEvent::DispatchEvent()

No special implementation.

void

OPEvent::PostQuitEvent ()

Set to TRUE a global variable that is treated in the WaitForEvent method to
exit the event loop.

47

3. Report on Port of OPaC to Unix/X11 3.4. Color Manager

void

OPEvent::Initialise ()

No special implementation.

void

OPEvent::Kill ()

No special implementation.

3.4 Color Manager

sd colman.cxx

OPColorMan::OPColorMan ()

No special implementation.

OPColorMan::~OPColorMan ()

No special implementation.

OPColorPixel

OPColorMan::MakeTrueColor (Card8 r, Card8 g, Card8 b) const

Xlib primitive used:

XAllocColor

Bool

OPColorMan::FindColor (OPColorPixel p,

Card8Out r, Card8Out g, Card8Out b) const

Xlib primitive used:

XQueryColor

3.5 Font Manager

sd fontman.cxx

48

3. Report on Port of OPaC to Unix/X11 3.6. Memory

3.6 Memory

Bool

SysMemOpenZone (const LatinChar* name,

Card32Out zone_id)

No special implementation.

Bool

SysMemCloseZone (Card32In zone_id)

No special implementation.

Bool

SysMemAlloc (Card32In zone_id, Card32In size,

BytePtrOut ptr,

Card32Out allocated,

Card32Out mem_id)

Call to malloc.

Bool

SysMemFree (Card32In zone_id,

BytePtrIn ptr,

Card32In allocated,

Card32In mem_id)

Call to free.

3.7 File Input/Output

sd file io.cxx

OPaC_FileDesc

OPaC_OpenFileRead (OPStringIn name)

Call to system function open.

OPaC_FileDesc

OPaC_OpenFileWrite (OPStringIn name)

Call to system function open.

49

3. Report on Port of OPaC to Unix/X11 3.7. File Input/Output

OPaC_FileDesc

OPaC_OpenFileAppend (OPStringIn name)

Call to system function open.

Size

OPaC_ReadFile (OPaC_FileDesc file, void* void_buffer, Size size)

Call to system function read.

Size

OPaC_WriteFile (OPaC_FileDesc file,

const void* void_buffer, Size size)

Call to system function write.

Bool

OPaC_SeekFileAbs (OPaC_FileDesc file, Int32 offset)

Call to system function lseek.

Bool

OPaC_SeekFileRel (OPaC_FileDesc file, Int32 offset)

Call to system function lseek.

Size

OPaC_TellFilePos (OPaC_FileDesc file)

Call to system function lseek.

Size

OPaC_TellFileSize (OPaC_FileDesc file)

Call to system function llseek.

50

3. Report on Port of OPaC to Unix/X11 3.8. Startup

Bool

OPaC_FlushFile (OPaC_FileDesc file)

Call to system function fsync.

Bool

OPaC_TruncFile (OPaC_FileDesc file)

Call to system functions lseek and ftruncate.

Bool

OPaC_ResizeFile (OPaC_FileDesc file, Size size)

Call to system function ftruncate.

Bool

OPaC_CloseFile (OPaC_FileDesc file)

Call to system function close.

3.8 Startup

sd main.cxx

The pointer to the display structure is declared in this �le. The main function
calls XOpenDisplay an XCloseDisplay.

X window allows to open windows on di�erent screens and hosts. This has
not been used in the implementation, since this doesn't matches OPaC portability
philosophy.

51

Chapter 4

Concluding with limitations

The port of the library showed that the time of software development is mostly
spent in tests and debugging. Since the features were not too complex, the coding
was not a long work. The asynchronous nature of X window leads to some of
tricky debugging situations. Hopefully, every problem was found a solution but
sometimes requiring a long investigation. The \spiral" approach discussed in the
introduction allowed to get a satisfying result. Though, some missing features need
to be implemented and some others have to be modi�ed for better performance.
Some bugs and limitations are yet obvious at this stage of work:

� The bitplane operations used in OPGrailCursor::Initialise and
in OPGrailPort::CopyRect don't give the expected results on some X servers.

� The startup takes too much time. Some initialisation stu� could be optimized
to reduce the number of queries to the server.

� The indexed color displays are not supported. As they tend to disappear,
they may never need to be supported...

� The font management is not implemented. For a fully portable system, OPaC
should use a system independent font package.

Inspite of these misgivings, OPaC is beginning to conquer open Unix world.
With some time spent in improving and supporting the library, the graphical inter-
face standards will have a new fellow, a dynamic one.

Laurent Bovet

February 9, 1998
Lausanne, Switzerland

52

Bibliography

[1] A. NYE, Xlib Programming Manual, O'Reilly & Associates Inc., USA, 1992.

[2] A. NYE, Xlib Reference Manual, Third Edition, O'Reilly & Associates Inc.,
USA, 1992.

53

Index

ActivateAsFrontWindow, 14, 39
Activate

OPGrailCursor::, 20, 45
BeginDraw

OPGrailPixmap::, 12, 37
OPGrailWindow::, 16, 41

ChangeName, 14, 39
Close

OPGrailWindow::, 14, 39
CopyRect, 10, 35
DispatchEvent, 25, 47
DrawAALineTo, 9, 34
DrawAALine, 9, 34
DrawDot, 8, 33
DrawHairLineTo, 9, 34
DrawHairLine, 9, 34
DrawLineDX, 8, 33
DrawLineDY, 8, 33
DrawLineToX, 8, 33
DrawLineToY, 8, 33
DrawRect, 9, 33
EndDraw

OPGrailPixmap::, 12, 37
OPGrailWindow::, 17, 41

FillRect, 9, 34
FindColor, 26, 48
FindOwnWindow, 17, 42
Flush

OPGrailWindow::, 17, 42
GetFontName , 18, 44
GetFontStyle, 18, 44
GetFrameSize, 16, 41
GetOrigin, 15, 40
GetSize, 16, 41
HandOverToWindow, 24, 46
HandleKeyEvent, 46
Hide

OPGrailCursor::, 20, 45
Initialise

OPEvent::, 25, 48
OPGrailCursor::, 20, 45
OPGrailFont, 18, 43
OPGrailPixmap::, 12, 37
OPGrailWindow::, 13, 38

IsActive, 15, 40

Kill

OPEvent::, 25, 48
MakeTrueColor, 26, 48
OPColorMan, 26, 48
OPEvent, 24, 46
OPGrailCursor, 19, 44
OPGrailFont, 17, 43
OPGrailPixmap, 11, 36
OPGrailPort, 8, 33
OPGrailWindow, 12, 38
OP EVENT KEY DOWN, 22
OP EVENT MOTION, 22
OP EVENT PRESS, 21
OP EVENT RELEASE, 22
OP TIMER TICK, 24
OPaC CloseFile, 29, 51
OPaC FlushFile, 29, 51
OPaC GrailPort BeginDraw, 6, 31
OPaC GrailPort EndDraw, 6, 31
OPaC GrailPort Flush, 6, 31
OPaC GrailPort Initialise, 6, 31
OPaC GrailPort Kill, 6, 31
OPaC GrailPort SetBackColor, 7, 32
OPaC GrailPort SetClipRect, 7, 32
OPaC GrailPort SetFont, 8, 32
OPaC GrailPort SetForeColor, 7, 32
OPaC GrailPort SetLineStyle, 7, 32
OPaC OpenFileAppend, 28, 50
OPaC OpenFileRead, 27, 49
OPaC OpenFileWrite, 28, 49
OPaC ReadFile, 28, 50
OPaC ResizeFile, 29, 51
OPaC SeekFileAbs, 28, 50
OPaC SeekFileRel, 28, 50
OPaC TellFilePos, 29, 50
OPaC TellFileSize, 29, 50
OPaC TruncFile, 29, 51
OPaC WriteFile, 28, 50
Open

OPGrailWindow::, 14, 39
PostQuitEvent, 24, 25, 47
RealizeFont, 18, 43
Redraw, 17, 24, 42
Reduce, 14, 39
ResetToNormal

54

INDEX INDEX

OPGrailCursor::, 20, 45
RestoreInstance

OPGrailFont::, 18, 43
ReturnAscender, 19, 44
ReturnDescender, 19, 44
ReturnFontSize, 18, 44
ReturnOPwinFromXwin, 46
ReturnWidth

OPGrailFont:::, 19, 44
SetColorPixels, 11, 36
SetGrayPixels, 11, 36
SetOPEventState, 46
SetOrigin, 15, 40
SetRGBPixels, 11, 36
SetSize, 15, 40
ShowText, 10, 35
StoreInstance

OPGrailFont::, 18, 43
SysChangedActive, 15, 24, 40
SysChangedOpen, 15, 40
SysChangedReduced, 15, 24, 40
SysMemAlloc, 27, 49
SysMemCloseZone, 27, 49
SysMemFree, 27, 49
SysMemOpenZone, 27, 49
SystemGetRGBPixels, 12, 37
UserChangedGeometry, 16, 24, 41
WaitForEvent, 25, 46
~OPColorMan, 26, 48
~OPEvent, 24, 46
~OPGrailCursor, 19, 44
~OPGrailFont, 17, 43
~OPGrailPixmap, 11, 36
~OPGrailWindow, 13, 38
info, 6
sd colman.cxx, 25, 48
sd event.cxx, 20, 45
sd file io.cxx, 27, 49
sd fontman.cxx, 26, 48
sd grail.cxx, 5, 17, 30, 42
sd grailcur.cxx, 19, 44
sd grailpxm.cxx, 11, 36
sd grailwdo.cxx, 12, 38
sd interface.h, 4, 30
sd main.cxx, 29, 51
sd memory.cxx, 26

exposure event, 24

geometry
user changed, 24

timer, 24

55

